No.: | PAPER - 1 | : CHEMISTRY, MATHEMATICS & PHYSICS | |-------------------|---| | | | | प्रश्नपुरितका - 1 | : रसायन विज्ञान, गणित तथा भौतिक विज्ञान | Do not open this Test Booklet until you are asked to do so. इस परीक्षा पुस्तिका को तब तक न खोलें जब तक कहा न जाए। Read carefully the Instructions on the Back Cover of this Test Booklet. इस परीक्षा पुस्तिका के पिछले आवरण पर दिए गए निर्देशों को ध्यान से पढ़ें। Important Instructions: महत्त्वपूर्ण निर्देश : Test Booklet Code परीक्षा पस्तिका संकेत - Immediately fill in the particulars on this page of the Test Booklet with Blue/Black Ball Point Pen. Use of pencil is strictly - The Answer Sheet is kept inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully. - The test is of 3 hours duration. - 4. The Test Booklet consists of 90 questions. The maximum - 5. There are three parts in the question paper A, B, C consisting of Chemistry, Mathematics and Physics having 30 questions in each part of equal weightage. Each question is allotted 4 (four) marks for correct response. - Candidates will be awarded marks as stated above in instruction No. 5 for correct response of each question. 1/4 (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet. - There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instruction 6 above. - Use Blue/Black Ball Point Pen only for writing particulars/ marking responses on Side-1 and Side-2 of the Answer Sheet. Use of pencil is strictly prohibited. - 9. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. except the Admit Card inside the examination room/hall. - 10. Rough work is to be done on the space provided for this purpose in the Test Booklet only. This space is given at the bottom of each page and in one page (i.e. Page 39) at the end of the booklet. - 11. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator on duty in the Room/Hall. However, the candidates are allowed to take away this Test Booklet with them. - 12. The CODE for this Booklet is ${f B}$. Make sure that the CODE printed on Side-2 of the Answer Sheet and also tally the serial number of the Test Booklet and Answer Sheet are the same as that on this booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the - परीक्षा पुस्तिका के इस पुष्ठ पर आवश्यक विवरण नीले / काले बॉल प्वाइंट पेन से तत्काल भरें। पेन्सिल का प्रयोग बिल्कुल वर्जित है। - 2. उत्तर पत्र इस परीक्षा पुस्तिका के अन्दर रखा है। जब आपको परीक्षा पुस्तिका खोलने को कहा जाए, तो उत्तर पत्र निकाल कर सावधानीपूर्वक विवरण भरें। - 3. परीक्षा की अवधि 3 घंटे है। - 4. इस परीक्षा पुस्तिका में 90 प्रश्न हैं। अधिकतम अंक 360 हैं। - इस परीक्षा पुस्तिका में तीन भाग A, B, C हैं, जिसके प्रत्येक भाग में रसायन विज्ञान, गणित एवं भौतिक विज्ञान के 30 प्रश्न हैं और सभी प्रश्नों के अंक समान हैं। प्रत्येक प्रश्न के सही उत्तर के लिए 4 (चार) अंक निर्धारित किये गये हैं। - अभ्यर्थियों को प्रत्येक सही उत्तर के लिए उपरोक्त निर्देशन संख्या 5 के निर्देशानुसार अंक दिये जायेंगे। प्रत्येक प्रश्न के गलत उत्तर के लिये 1/4 वां भाग काट लिया जायेगा। यदि उत्तर पत्र में किसी प्रश्न का उत्तर नहीं दिया गया हो तो कुल प्राप्तांक से कोई कटौती नहीं की जायेगी। - 7. प्रत्येक प्रश्न का केवल एक ही सही उत्तर है। एक से अधिक उत्तर देने पर उसे गलत उत्तर माना जायेगा और उपरोक्त निर्देश 6 के अनुसार अंक काट लिये जायेंगे। - उत्तर पत्र के *पृष्ठ-1* एवं *पृष्ठ-2* पर वांछित विवरण एवं उत्तर अंकित करने हेतु केवल नीले/ काले बॉल प्वाइंट पेन का ही प्रयोग करें। पेन्सिल का प्रयोग बिल्कुल वर्जित है। - परीक्षार्थी द्वारा परीक्षा कक्ष/हॉल में प्रवेश कार्ड के अलावा किसी भी प्रकार की पाठ्य सामग्री, मुद्रित या हस्तलिखित, कागज की पर्चियाँ, पेजर, मोबाइल फोन या किसी भी प्रकार के इलेक्ट्रॉनिक उपकरणों या किसी अन्य प्रकार की सामग्री को ले जाने या उपयोग करने की अनुमति नहीं है। - 10. रफ कार्य परीक्षा पुस्तिका में केवल निर्धारित जगह पर ही कीजिए। यह जगह प्रत्येक पृष्ठ पर नीचे की ओर और पुस्तिका के अंत में एक पृष्ठ पर (पष्ठ 39) दी गई है। - 11. परीक्षा समाप्त होने पर, परीक्षार्थी कक्ष/हॉल छोड़ने से पूर्व उत्तर पत्र कक्ष निरीक्षक को अवश्य सौंप दें। *परीक्षार्थी अपने साथ इस परीक्षा पुस्तिका* को ले जा सकते हैं। - 12. इस पुस्तिका का संकेत ${f B}$ है। यह सुनिश्चित कर लें कि इस पुस्तिका का संकेत, उत्तर पत्र के पुष्ठ-2 पर छपे संकेत से मिलता है और यह भी सुनिश्चित कर लें कि परीक्षा पुस्तिका, उत्तर पत्र पर क्रम संख्या मिलती है। अगर यह भिन्न हो तो परीक्षार्थी दूसरी परीक्षा पुस्तिका और उत्तर पत्र लेने के लिए निरीक्षक को तुरन्त अवगत कराएँ। - उत्तर पत्र को न मोड़ें एवं न ही उस पर अन्य निशान लगाएँ। | 10. DO HOCTOR | i make any stray mark on the Answer | 100 011 14 41 1 110 24 1 6 01 41 014 1 111 1111 | |--|---|--| | Name of the Car
परीक्षार्थी का नाम (| ndidate (in Capital letters) :
बड़े अक्षरों में) : | | | Roll Number
अनुक्रमांक | : in figures
: अंकों में
: in words
: शब्दों में | | | Examination Ce
परीक्षा केन्द्र नम्बर
Name of Exami | entre Number : | | | | | | | Candidate's Sig
परीक्षार्थी के हस्ताक्ष | mature :
र : | 1. Invigilator's Signature :
निरीक्षक के हस्ताक्षर :
2. Invigilator's Signature :
निरीक्षक के हस्ताक्षर : | ### PART A - CHEMISTRY - **1.** Which of the following is the energy of a possible excited state of hydrogen? - (1) -6.8 eV - (2) -3.4 eV - (3) + 6.8 eV - (4) + 13.6 eV - 2. In the following sequence of reactions: $$\label{eq:tolure} \text{Tolurne} \xrightarrow{\quad KMnO_4 \quad} A \xrightarrow{\quad SOCl_2 \quad} B \xrightarrow{\quad H_2/Pd \quad} C \text{,}$$ the product C is: - (1) $C_6H_5CH_3$ - (2) $C_6H_5CH_2OH$ - (3) C_6H_5CHO - (4) C_6H_5COOH - 3. Which compound would give 5 keto 2 methyl hexanal upon ozonolysis? ### भाग A - रसायन विज्ञान - 1. निम्नलिखित में से हाईड्रोजन की संभव उत्तेजित अवस्था की ऊर्जा कौन सी है? - (1) -6.8 eV - (2) -3.4 eV - (3) + 6.8 eV - (4) + 13.6 eV - 2. दिए गए अभिक्रिया अनुक्रम में उत्पाद C है : $$Toluene \xrightarrow{\quad KMnO_4 \quad} A \xrightarrow{\quad SOCl_2 \quad} B \xrightarrow{\quad H_2/Pd \quad} C$$ - (1) $C_6H_5CH_3$ - (2) $C_6H_5CH_2OH$ - (3) C_6H_5CHO - (4) C_6H_5COOH - 3. ओ.जोनोलिसिस करने पर कौन सा यौगिक 5 - कीटो - 2 - मेथिल हेक्सानैल देता है? - **4.** The ionic radii (in Å) of N^{3-} , O^{2-} and F^{-} are respectively: - (1) 1.36, 1.71 and 1.40 - (2) 1.71, 1.40 and 1.36 - (3) 1.71, 1.36 and 1.40 - (4) 1.36, 1.40 and 1.71 - 5. The color of $KMnO_4$ is due to : - (1) d d transition - (2) $L \rightarrow M$ charge transfer transition - (3) $\sigma \sigma^*$ transition - (4) $M \rightarrow L$ charge transfer transition - 6. **Assertion:** Nitrogen and Oxygen are the main components in the atmosphere but these do not react to form oxides of nitrogen. - **Reason:** The reaction between nitrogen and oxygen requires high temperature. - (1) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion - (2) The assertion is incorrect, but the reason is correct - (3) Both the assertion and reason are incorrect - (4) Both assertion and reason are correct, and the reason is the correct explanation for the assertion - N³⁻, O²⁻ तथा F⁻ की आयिनक त्रिज्यायें (Å में) क्रमशः हैं: - (1) 1.36, 1.71 तथा 1.40 - (2) 1.71, 1.40 तथा 1.36 - (3) 1.71, 1.36 तथा 1.40 - (4) 1.36, 1.40 तथा 1.71 - 5. $KMnO_4$ के रंग का कारण है : - (1) d d संक्रमण - (2) $L \rightarrow M$ आवेश स्थानांतरण संक्रमण - (3) $\sigma \sigma^* + \dot{\eta} + \dot{\eta} = 0$ - (4) $M \rightarrow L$ आवेश स्थानांतरण संक्रमण - 6. अभिकथन: नाइट्रोजन और ऑक्सीजन वातावरण के मुख्य घटक हैं परन्तु यह क्रिया करके नाइट्रोजन के ऑक्साइड नहीं बनाते। - तर्क: नाइट्रोजन और ऑक्सीजन के बीच अभिक्रिया के लिए उच्च ताप की आवश्यकता है। - (1) अभिकथन और तर्क दोनों सही हैं परन्तु तर्क अभिकथन का सही स्पष्टीकरण नहीं है। - (2) अभिकथन गलत है परन्तु तर्क सही है। - (3) अभिकथन व तर्क दोनों गलत हैं। - (4) अभिकथन और तर्क दोनों सही हैं और तर्क अभिकथन का सही स्पष्टीकरण है। - 7. Which of the following compounds is **not** an antacid? - (1) Cimetidine - (2) Phenelzine - (3) Ranitidine - (4) Aluminium hydroxide - **8.** In the context of the Hall Heroult process for the extraction of A*l*, which of the following statements is **false**? - (1) Al_2O_3 is mixed with CaF_2 which lowers the melting point of the mixture and brings conductivity - (2) Al^{3+} is reduced at the cathode to form Al - (3) Na_3AIF_6 serves as the electrolyte - (4) CO and CO₂ are produced in this process - **9.** Match the catalysts to the correct processes: # Catalyst Process - (A) TiCl₃ (i) Wacker process - (B) PdCl₂ (ii) Ziegler Natta polymerization - (C) CuCl₂ (iii) Contact process - (D) V₂O₅ (iv) Deacon's process - (1) (A) (ii), (B) (i), (C) (iv), (D) (iii) - (2) (A) (ii), (B) (iii), (C) (iv), (D) (i) - (3) (A) (iii), (B) (i), (C) (ii), (D) (iv) - (4) (A) (iii), (B) (ii), (C) (iv), (D) (i) - 7. निम्नलिखित में से कौन सा यौगिक प्रतिअम्ल **नहीं** है ? - (1) सिमेटिडीन - (2) फिनल्जिन - (3) रैनिटिडीन - (4) ऐलुमिनियम हाइड्राक्साइड - 8. हॉल-हेरॉल्ट प्रक्रम से ऐलुमिनियम के निष्कर्षण के संदर्भ में कौन सा कथन **गलत** है? - (1) CaF_2 को Al_2O_3 में मिलाने पर मिश्रण का गलनांक कम होता है और उसमें चालकता आती है। - (2) कैथोड पर Al^{3} + अपचियत हो कर Al बनाता है। - (3) Na_3AIF_6 विद्युत अपघट्य का काम करता है। - (4) इस प्रक्रम में CO तथा CO_2 का उत्पादन होता है। - दिए गए उत्प्रेरकों को सही प्रक्रम के साथ सुमेलित करें: # उत्प्रेरक प्रक्रम - (A)
TiCl₃ (i) वॉकर प्रक्रम - (B) PdCl₂ (ii) त्सीग्लर-नट्टा बहुलकीकरण - (C) CuCl₂ (iii) संस्पर्श प्रक्रम - $(D) V_2O_5$ (iv) डीकन प्रक्रम - (1) (A) (ii), (B) (i), (C) (iv), (D) (iii) - (2) (A) (ii), (B) (iii), (C) (iv), (D) (i) - (3) (A) (iii), (B) (i), (C) (ii), (D) (iv) - (4) (A) (iii), (B) (ii), (C) (iv), (D) (i) ### 10. In the reaction the product E is: (1) $$H_3C - \bigcirc \bigcirc \bigcirc CH_3$$ - **11.** Which polymer is used in the manufacture of paints and lacquers? - (1) Glyptal - (2) Polypropene - (3) Poly vinyl chloride - (4) Bakelite 10. दिए गए अभिक्रिया में उत्पाद E है : $$\begin{array}{c} NH_2 \\ \hline NaNO_2/HC1 \\ 0-5°C \end{array} \rightarrow D \xrightarrow{CuCN/KCN} E + N_2$$ $$CH_3$$ (1) $$H_3C - \bigcirc \bigcirc \bigcirc \bigcirc CH_3$$ - 11. किस बहुलक का उपयोग प्रलेप और प्रलाक्ष बनाने में होता है? - (1) ग्लिप्टाल - (2) पॉलिप्रोपीन - (3) पॉलि वाइनिल क्लोराइड - (4) बेकेलाइट | 12. | The number of geometric isomers that can exist for square planar [Pt (Cl) (py) (NH ₃) (NH_2OH)] ⁺ is (py = pyridine): | | 12. | | ामतलीय [Pt (Cl) (py) (NH ₃) (NH ₂ OH)] ⁺
= pyridine) के ज्यामितीय समावयवियों की
। है : | |-----|---|--|-----|--------|--| | | (1) | 3 | | (1) | 3 | | | (2) | 4 | | (2) | 4 | | | (3) | 6 | | (3) | 6 | | | (4) | 2 | | (4) | 2 | | 13. | High | ner order (>3) reactions are rare due | 13. | उच्च | कोटि अभिक्रिया (>3) दुर्लभ है क्योंकि : | | | (1) | increase in entropy and activation
energy as more molecules are
involved | | (1) | अधिक अणुओं के शामिल होने से एंट्रापी और
संक्रियण ऊर्जा में वृद्धि होती है। | | | (2) | shifting of equilibrium towards reactants due to elastic collisions | | (2) | लोचदार टकराव के कारण अभिकारकों की
दिशा में साम्य का स्थानांतरण होता है। | | | (3) | loss of active species on collision | | (3) | टकराव से सक्रिय स्पीशीज़ का क्षय होता है। | | | (4) | low probability of simultaneous collision of all the reacting species | | (4) | प्रतिक्रिया में सभी प्रजातियों के एक साथ टक्कर
की संभावना कम होती है। | | 14. | 4. Which among the following is the most reactive ? | | 14. | निम्ना | लेखित में से कौन सर्वाधिक अभिक्रियाशील है? | | | (1) | Br_2 | | (1) | Br_2 | | | (2) | I_2 | | (2) | I_2 | | | (3) | ICl | | (3) | ICl | | | (4) | Cl ₂ | | (4) | Cl ₂ | | D/D | B/Page 6 SPACE FOR ROUGH WORK / एफ कार्य के लिए जगह | | | | | - 15. Two Faraday of electricity is passed through a solution of $CuSO_4$. The mass of copper deposited at the cathode is : (at. mass of Cu = 63.5 amu) - (1) 63.5 g - (2) 2 g - (3) 127 g - (4) 0 g - 16. 3 g of activated charcoal was added to 50 mL of acetic acid solution (0.06N) in a flask. After an hour it was filtered and the strength of the filtrate was found to be 0.042 N. The amount of acetic acid adsorbed (per gram of charcoal) is: - (1) 36 mg - (2) 42 mg - (3) 54 mg - (4) 18 mg - **17.** The synthesis of alkyl fluorides is best accomplished by : - (1) Sandmeyer's reaction - (2) Finkelstein reaction - (3) Swarts reaction B/Page 7 (4) Free radical fluorination - 15. CuSO₄ के एक विलयन में, दो फैराडे विद्युत प्रवाहित की गई। कैथोड पर निक्षेपित तांबे का द्रव्यमान है: (Cu का परमाण्विक द्रव्यमान =63.5 amu) - (1) 63.5 g - (2) 2 g - (3) 127 g - (4) 0 g - 16. एक पलास्क में 0.06N एसिटिक अम्ल के 50 mL विलयन में 3 g सिक्रियित् काष्ठ कोयला मिलाया गया। एक घंटे के पश्चात् उसे छाना गया और निस्यंद की प्रबलता 0.042 N पाई गई। अधिशोषित एसिटिक अम्ल की मात्रा (काष्ठ-कोयला के प्रति ग्राम पर) है: - (1) 36 mg - (2) 42 mg - (3) 54 mg - (4) 18 mg - 17. अल्काइल फ्लोराइड के संश्लेषण के लिए सबसे बेहतरीन विधि है: - (1) सैन्डमायर अभिक्रिया - (2) फिंकलस्टाइन अभिक्रिया - (3) स्वार्टस अभिक्रिया - (4) मुक्त मूलक फ्लोरिनेशन - 18. The molecular formula of a commercial resin used for exchanging ions in water softening is $C_8H_7SO_3Na$ (Mol. wt. 206). What would be the maximum uptake of Ca^{2+} ions by the resin when expressed in mole per gram resin? - (1) $\frac{1}{206}$ - (2) $\frac{2}{309}$ - (3) $\frac{1}{412}$ - $(4) \frac{1}{103}$ - **19.** Which of the vitamins given below is water soluble? - (1) Vitamin D - (2) Vitamin E - (3) Vitamin K - (4) Vitamin C - **20.** The intermolecular interaction that is dependent on the inverse cube of distance between the molecules is : - (1) ion dipole interaction - (2) London force - (3) hydrogen bond - (4) ion ion interaction - 18. एक वाणिज्य रेज़िन का आण्विक सूत्र $C_8H_7SO_3Na$ है (आण्विक भार = 206) इस रेज़िन की Ca^2+ आयन की अधिकतम अंतर्ग्रहण क्षमता (मोल प्रति ग्राम रेज़िन) क्या है? - $(1) \quad \frac{1}{206}$ - (2) $\frac{2}{309}$ - (3) $\frac{1}{412}$ - $(4) \frac{1}{103}$ - 19. निम्नलिखित विटामिनों में जल में विलेय होने वाला है: - (1) विटामिन D - (2) विटामिन E - (3) विटामिन K - (4) विटामिन C - 20. वह अंतरा-अणुक अन्योन्य क्रिया जो अणुओं के बीच की दूरी के प्रतिलोम घन पर निर्भर है, है : - (1) आयन द्विध्रुव अन्योन्य - (2) लंडन बल - (3) हाईड्रोजन बंधक - (4) आयन आयन अन्योन्य **21.** The following reaction is performed at 298 K. $$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$ The standard free energy of formation of NO(g) is 86.6 kJ/mol at 298 K. What is the standard free energy of formation of NO₂(g) at 298 K? $(K_p = 1.6 \times 10^{12})$ - (1) $86600 + R(298) ln(1.6 \times 10^{12})$ - (2) $86600 \frac{\ln(1.6 \times 10^{12})}{\text{R (298)}}$ - (3) $0.5[2 \times 86,600 R(298) ln(1.6 \times 10^{12})]$ - (4) $R(298) ln(1.6 \times 10^{12}) 86600$ - **22.** Which of the following compounds is **not** colored yellow? - (1) $K_3[Co(NO_2)_6]$ - (2) $(NH_4)_3 [As (Mo_3 O_{10})_4]$ - (3) BaCrO₄ - (4) $Zn_2[Fe(CN)_6]$ - 23. In Carius method of estimation of halogens, 250 mg of an organic compound gave 141 mg of AgBr. The percentage of bromine in the compound is: $(at. \ mass \ Ag = 108; \ Br = 80)$ - (1) 36 - (2) 48 - (3) 60 - (4) 24 21. निम्नलिखित अभिक्रिया को 298 K पर किया गया। $$2NO(g) + O_2(g) \Rightarrow 2NO_2(g)$$ 298 K पर NO(g) के संभवन की मानक मुक्त ऊर्जा 86.6 kJ/mol है। 298 K पर NO₂(g) की मानक मुक्त ऊर्जा क्या है? $(K_p = 1.6 \times 10^{12})$ - (1) $86600 + R(298) ln(1.6 \times 10^{12})$ - (2) $86600 \frac{\ln(1.6 \times 10^{12})}{\text{R (298)}}$ - (3) $0.5[2 \times 86,600 R(298) ln(1.6 \times 10^{12})]$ - (4) $R(298) ln(1.6 \times 10^{12}) 86600$ - 22. दिए गए यौगिकों में कौन से यौगिक का रंग पीला **नहीं** है? - (1) $K_3[Co(NO_2)_6]$ - (2) $(NH_4)_3 [As (Mo_3 O_{10})_4]$ - (3) BaCrO₄ - (4) $Zn_2[Fe(CN)_6]$ - 23. हैलोजन के आकलन की कैरिअस विधि में 250 mg कार्बिनक यौगिक 141 mg AgBr देता है। यौगिक में ब्रोमीन की प्रतिशतता है: (परमाण्विक द्रव्यमान Ag =108; Br =80) - (1) 36 - (2) 48 - (3) 60 - (4) 24 - **24.** Sodium metal crystallizes in a body centred cubic lattice with a unit cell edge of 4.29Å. The radius of sodium atom is approximately: - (1) 3.22Å - (2) 5.72Å - (3) 0.93Å - (4) 1.86Å - **25.** Which of the following compounds will exhibit geometrical isomerism? - (1) 3 Phenyl 1 butene - (2) 2 Phenyl 1 butene - (3) 1, 1 Diphenyl 1 propane - (4) 1 Phenyl 2 butene - 26. The vapour pressure of acetone at 20°C is 185 torr. When 1.2 g of a non-volatile substance was dissolved in 100 g of acetone at 20°C, its vapour pressure was 183 torr. The molar mass (g mol⁻¹) of the substance is: - (1) 64 - (2) 128 - (3) 488 - (4) 32 - 27. From the following statements regarding H_2O_2 , choose the incorrect statement : - (1) It decomposes on exposure to light - (2) It has to be stored in plastic or wax lined glass bottles in dark - (3) It has to be kept away from dust - (4) It can act only as an oxidizing agent - 24. सोडियम धातु एक अंत:केन्द्रित घनीय जालक में क्रिस्टिलत होता है जिसके कोर की लंबाई 4.29Å है। सोडियम परमाणु की ऋज्या लगभग है: - (1) 3.22Å - (2) 5.72Å - (3) 0.93Å - (4) 1.86Å - 25. निम्नलिखित में से कौन सा यौगिक ज्यामितीय समावयवता दर्शाता है? - (1) 3 फेनिल 1 ब्यूटीन - (2) 2 फेनिल 1 ब्यूटीन - (3) 1, 1 डाईफेनिल 1 प्रोपेन - (4) 1 फेनिल 2 ब्यूटीन - 26. 20°C पर ऐसिटोन की वाष्प दाब 185 torr है। जब 20°C पर, 1.2 g अवाष्पशील पदार्थ को 100 g ऐसिटोन में घोला गया, तब वाष्प दाब 183 torr हो गया। इस पदार्थ का मोलर द्रव्यमान (g mol -1 में) है: - (1) 64 - (2) 128 - (3) 488 - (4) 32 - 27. H_2O_2 के संदर्भ में, निम्नलिखित कथनों में से **गलत** कथन चुनिए : - (1) प्रकाश में इसका अपघटन होता है - (2) इसे प्लास्टिक या मोमअटे कांच बोतलों में अंधेरे में संग्रहित किया जाता है - (3) इसे धूल से दूर रखना चाहिए - (4) यह केवल ऑक्सीकारक है | 28. | Which one of the following alkaline earth | |-----|--| | | metal sulphates has its hydration enthalpy | | | greater than its lattice enthalpy? | - (1) BeSO₄ - (2) BaSO₄ - (3) SrSO₄ - (4) $CaSO_4$ - 29. The standard Gibbs energy change at 300 K for the reaction $2A \rightleftharpoons B + C$ is 2494.2 J. At a given time, the composition of the reaction mixture is $[A] = \frac{1}{2}$, [B] = 2 and $[C] = \frac{1}{2}$. The reaction proceeds in the : [R = 8.314 J/K/mol, e = 2.718] - (1) reverse direction because $Q > K_c$ - (2) forward direction because $Q < K_c$ - (3) reverse direction because $Q \le K_c$ - (4) forward direction because $Q > K_c$ - **30.** Which one has the highest boiling point? - (1) Ne - (2) Kr - (3) Xe - (4) He B/Page 11 - (1) BeSO₄ - (2) BaSO₄ - (3) SrSO₄ - (4) CaSO₄ 29. $$300 \text{ K}$$ पर अभिक्रिया $2A \rightleftharpoons B + C$ की मानक गिब्ज़ ऊर्जा 2494.2 J है। दिए गए समय में अभिक्रिया मिश्रण का संघटन $[A] = \frac{1}{2}$, $[B] = 2$ और $[C] = \frac{1}{2}$ है। अभिक्रिया अग्रसित होती है: $[R = 8.314 \text{ J/K/mol}, e = 2.718]$ - (1) विपरीत दिशा में क्योंकि $Q > K_c$ - (2) अग्र दिशा में क्योंकि Q < K - (3) विपरीत दिशा में क्योंकि $Q < K_c$ - (4) अग्र दिशा में क्योंकि Q > K_c 30. निम्नलिखित में से सर्वाधिक क्वथनांक किसका है? - (1) Ne - (2) Kr - (3) Xe - (4) He ### PART B - MATHEMATICS - **31.**
The sum of coefficients of integral powers of x in the binomial expansion of $(1 2\sqrt{x})^{50}$ is: - (1) $\frac{1}{2}(3^{50})$ - (2) $\frac{1}{2}(3^{50} 1)$ - (3) $\frac{1}{2}(2^{50} + 1)$ - (4) $\frac{1}{2}(3^{50} + 1)$ - 32. Let f(x) be a polynomial of degree four having extreme values at x=1 and x=2. If $$\lim_{x\to 0} \left[1 + \frac{f(x)}{x^2}\right] = 3$$, then $f(2)$ is equal to: - (1) -4 - (2) 0 - (3) 4 - (4) 8 - 33. The mean of the data set comprising of 16 observations is 16. If one of the observation valued 16 is deleted and three new observations valued 3, 4 and 5 are added to the data, then the mean of the resultant data, is: - (1) 16.0 - (2) 15.8 - (3) 14.0 - (4) 16.8 ## भाग B - गणित - **31.** $(1 2\sqrt{x})^{50}$ के द्विपद प्रसार में x की पूर्णांकीय घातों के गुणांकों का योग है : - $(1) \quad \frac{1}{2}(3^{50})$ - (2) $\frac{1}{2}(3^{50} 1)$ - (3) $\frac{1}{2}(2^{50} + 1)$ - (4) $\frac{1}{2}(3^{50} + 1)$ - 32. माना f(x) घात 4 का एक बहुपद है जिसके x=1 तथा x=2 पर चरम मान हैं। यदि $$\lim_{x\to 0} \left[1 + \frac{f(x)}{x^2} \right] = 3 \ \text{है, तो } f(2) \text{ बराबर है :}$$ - (1) -4 - (2) 0 - (3) 4 - (4) 8 - 33. 16 प्रेक्षणों वाले आँकड़ों का माध्य 16 है। यदि एक प्रेक्षण जिसका मान 16 है, को हटा कर, 3 नये प्रेक्षण जिनके मान 3, 4 तथा 5 हैं, आँकड़ों में मिला दिये जाते हैं, तो नये आँकड़ों का माध्य है: - (1) 16.0 - (2) 15.8 - (3) 14.0 - (4) 16.8 The sum of first 9 terms of the series $$\frac{1^3}{1} + \frac{1^3 + 2^3}{1+3} + \frac{1^3 + 2^3 + 3^3}{1+3+5} + \dots \text{ is :}$$ - (1) 96 - (2)142 - (3)192 - (4)71 - Let O be the vertex and Q be any point on 35. the parabola, $x^2 = 8y$. If the point P divides the line segment OQ internally in the ratio 1:3, then the locus of P is: - (1) $y^2 = x$ - (2) $y^2 = 2x$ (3) $x^2 = 2y$ - (4) $x^2 = y$ - 36. Let α and β be the roots of equation $x^2 - 6x - 2 = 0$. If $a_n = \alpha^n - \beta^n$, for $n \ge 1$, then the value of $\frac{a_{10} - 2a_8}{2a_9}$ is equal to : - (1) - (2)3 - (3) - **(4)** 6 $$\frac{1^3}{1} + \frac{1^3 + 2^3}{1+3} + \frac{1^3 + 2^3 + 3^3}{1+3+5} + \dots$$ प्रथम 9 पदों का योग है : - 96 - 71 - माना परवलय $x^2 = 8y$ का शीर्ष O तथा उस पर कोई 35. बिंदु Q है। यदि बिंदु P, रेखाखंड OQ को 1:3 के आंतरिक अनुपात में बाँटता है, तो P का बिंदुपथ है : - माना α तथा β द्विघात समीकरण $x^2 6x 2 = 0$ के 36. मूल हैं। यदि $n \ge 1$ के लिए, $a_n = \alpha^n - \beta^n$ है, तो $\frac{a_{10}-2a_8}{2a_9}$ का मान है : 37. If 12 identical balls are to be placed in 3 identical boxes, then the probability that one of the boxes contains exactly 3 balls is: (1) $$55\left(\frac{2}{3}\right)^{10}$$ (2) $$220\left(\frac{1}{3}\right)^{12}$$ (3) $$22\left(\frac{1}{3}\right)^{1}$$ (4) $$\frac{55}{3} \left(\frac{2}{3}\right)^{11}$$ - **38.** A complex number z is said to be unimodular if |z|=1. Suppose z_1 and z_2 are complex numbers such that $\frac{z_1-2z_2}{2-z_1\overline{z}_2}$ is unimodular and z_2 is not unimodular. Then the point z_1 lies on a : - (1) straight line parallel to *y*-axis. - (2) circle of radius 2. - (3) circle of radius $\sqrt{2}$. - (4) straight line parallel to *x*-axis. 37. यदि 12 एक जैसी गेंदें, 3 एक जैसे बक्सों में रखी जाती हैं, तो इनमें से एक बक्से में ठीक 3 गेंदें होने की प्रायिकता है: (1) $$55\left(\frac{2}{3}\right)^{10}$$ (2) $$220\left(\frac{1}{3}\right)^{12}$$ (3) $$22\left(\frac{1}{3}\right)^{11}$$ (4) $$\frac{55}{3} \left(\frac{2}{3}\right)^{11}$$ - 38. एक सम्मिश्र संख्या z एकमापांकी कहलाती है यदि |z|=1 है। माना z_1 तथा z_2 ऐसी सम्मिश्र संख्याएँ हैं कि $\frac{z_1-2z_2}{2-z_1\overline{z_2}}$ एकमापांकी है तथा z_2 एकमापांकी नहीं है, तो बिंदु z_1 स्थित है : - (1) y-अक्ष के समांतर एक रेखा पर। - (2) 2 त्रिज्या वाले वृत्त पर। - (3) $\sqrt{2}$ ित्रज्या वाले वृत्त पर। - (4) x-अक्ष के समांतर एक रेखा पर। 39. The integral $\int \frac{dx}{x^2(x^4+1)^{\frac{3}{4}}}$ equals: $$(1) \quad (x^4+1)^{\frac{1}{4}} + c$$ (2) $$-(x^4+1)^{\frac{1}{4}}+c$$ (3) $$-\left(\frac{x^4+1}{x^4}\right)^{\frac{1}{4}} + c$$ (4) $$\left(\frac{x^4+1}{x^4}\right)^{\frac{1}{4}} + c$$ - **40.** The number of points, having both co-ordinates as integers, that lie in the interior of the triangle with vertices (0, 0), (0, 41) and (41, 0), is: - (1) 861 - (2) 820 - (3) 780 - (4) 901 - **41.** The distance of the point (1, 0, 2) from the point of intersection of the line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ and the plane x-y+z=16, is: - (1) 8 - (2) $3\sqrt{21}$ - (3) 13 - (4) $2\sqrt{14}$ **39.** समाकल $\int \frac{dx}{x^2(x^4+1)^{3/4}}$ बराबर है : $$(1) \quad (x^4+1)^{\frac{1}{4}} + c$$ (2) $$-(x^4+1)^{\frac{1}{4}}+c$$ (3) $$-\left(\frac{x^4+1}{x^4}\right)^{\frac{1}{4}} + c$$ (4) $$\left(\frac{x^4+1}{x^4}\right)^{\frac{1}{4}} + c$$ - 40. त्रिभुज, जिसके शीर्ष (0, 0), (0, 41) तथा (41, 0) हैं, के आंतरिक भाग में स्थित उन बिंदुओं की संख्या जिनके दोनों निर्देशांक पूर्णांक हैं, है: - (1) 861 - (2) 820 - (3) 780 - (4) 901 - 41. रेखा $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ तथा समतल x-y+z=16 के प्रतिच्छेद बिंदु की, बिंदु (1, 0, 2) से दूरी है: - (1) 8 - (2) $3\sqrt{21}$ - (3) 13 - (4) $2\sqrt{14}$ 42. The equation of the plane containing the line 2x-5y+z=3; x+y+4z=5, and parallel to the plane, x+3y+6z=1, is: $$(1) \quad x + 3y + 6z = -7$$ (2) $$x + 3y + 6z = 7$$ $$(3) \quad 2x + 6y + 12z = -13$$ $$(4) 2x + 6y + 12z = 13$$ **43.** The area (in sq. units) of the region described by $$\{(x, y): y^2 \le 2x \text{ and } y \ge 4x - 1\} \text{ is } :$$ $$(1) \frac{5}{64}$$ (2) $$\frac{15}{64}$$ (3) $$\frac{9}{32}$$ $$(4) \frac{7}{32}$$ **44.** If m is the A.M. of two distinct real numbers l and n (l, n > 1) and G_1 , G_2 and G_3 are three geometric means between l and n, then $G_1^4 + 2G_2^4 + G_3^4$ equals. $$(1) \quad 4 \ lm^2n$$ $$(2) \quad 4 \ lmn^2$$ (3) $$4 l^2 m^2 n^2$$ (4) $$4 l^2 mn$$ B/Page 16 **42.** रेखा 2x - 5y + z = 3, x + y + 4z = 5 को अंतर्विष्ट करने वाले समतल, जो समतल x + 3y + 6z = 1 के समांतर है, का समीकरण है : (1) $$x + 3y + 6z = -7$$ (2) $$x + 3y + 6z = 7$$ $$(3) \quad 2x + 6y + 12z = -13$$ $$(4) 2x + 6y + 12z = 13$$ **43.** $\{(x, y): y^2 \le 2x \text{ तथा } y \ge 4x - 1\}$ द्वारा परिभाषित क्षेत्र का क्षेत्रफल (वर्ग इकाइयों) में है : $$(1) \frac{5}{64}$$ (2) $$\frac{15}{64}$$ (3) $$\frac{9}{32}$$ $$(4) \frac{7}{32}$$ 44. यदि दो विभिन्न वास्तिविक संख्याओं l तथा n (l,n>1) का समांतर माध्य (A.M.) m है और l तथा n के बीच तीन गुणोत्तर माध्य (G.M.) G_1 , G_2 तथा G_3 हैं, तो $G_1^4 + 2G_2^4 + G_3^4$ बराबर है : (1) $$4 lm^2n$$ $$(2) \quad 4 \ lmn^2$$ (3) $$4 l^2 m^2 n^2$$ (4) $$4 l^2 mn$$ - **45.** Locus of the image of the point (2, 3) in the line (2x 3y + 4) + k (x 2y + 3) = 0, $k \in \mathbb{R}$, is a : - (1) straight line parallel to y-axis. - (2) circle of radius $\sqrt{2}$. - (3) circle of radius $\sqrt{3}$. - (4) straight line parallel to x-axis. - **46.** The area (in sq. units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse $$\frac{x^2}{9} + \frac{y^2}{5} = 1$$, is: - (1) 18 - (2) $\frac{27}{2}$ - (3) 27 - $(4) \frac{27}{4}$ - **47.** The number of integers greater than 6,000 that can be formed, using the digits 3, 5, 6, 7 and 8, without repetition, is: - (1) 192 - (2) 120 - (3) 72 - (4) 216 - **48.** Let A and B be two sets containing four and two elements respectively. Then the number of subsets of the set $A \times B$, each having at least three elements is : - (1) 256 - (2) 275 - (3) 510 - (4) 219 - 45. बिंदु (2, 3) के रेखा $(2x-3y+4)+k (x-2y+3)=0, k \in \mathbf{R} \ \dot{\mathbf{H}}$ प्रतिबिंब का बिंदुपथ एक : - (1) 1/-अक्ष के समांतर रेखा है। - (2) $\sqrt{2}$ त्रिज्या का वृत्त है। - (3) $\sqrt{3}$ त्रिज्या का वृत्त है। - (4) x-अक्ष के समांतर रेखा है। - 46. दीर्घवृत्त $\frac{x^2}{9} + \frac{y^2}{5} = 1$ के नाभिलम्बों के सिरों पर खींची गई स्पर्श रेखाओं द्वारा निर्मित चतुर्भुज का क्षेत्रफल (वर्ग इकाइयों में) है : - (1) 18 - (2) $\frac{27}{2}$ - (3) 27 - $(4) \frac{27}{4}$ - **47.** अंकों 3, 5, 6, 7 तथा 8 के प्रयोग से, बिना दोहराये, बनने वाले 6,000 से बड़े पूर्णांकों की संख्या है : - (1) 192 - (2) 120 - (3) 72 - (4) 216 - 48. माना A तथा B दो समुच्चय हैं जिनमें क्रमश: चार तथा दो अवयव हैं, तो समुच्चय A × B के उन उपसमुच्चयों की संख्या, जिनमें प्रत्येक में कम से कम तीन अवयव हैं, है: - (1) 256 - (2) 275 - (3) 510 - (4) 219 ### 49. $$\tan^{-1} y = \tan^{-1} x + \tan^{-1} \left(\frac{2x}{1 - x^2} \right),$$ $\tan^{-1} y = \tan^{-1} x + \tan^{-1} \left(\frac{2x}{1 - x^2} \right),$ where $|x| < \frac{1}{\sqrt{3}}$. Then a value of y is : $\sqrt{3} = \frac{1}{\sqrt{3}} \frac{1}{\sqrt{$ where $|x| < \frac{1}{\sqrt{3}}$. Then a value of *y* is: $$(1) \quad \frac{3x + x^3}{1 - 3x^2}$$ $$(2) \quad \frac{3x - x^3}{1 + 3x^2}$$ $$(3) \quad \frac{3x + x^3}{1 + 3x^2}$$ (4) $$\frac{3x-x^3}{1-3x^2}$$ ### The integral **50.** $$\int_{2}^{4} \frac{\log x^2}{\log x^2 + \log (36 - 12x + x^2)} \, \mathrm{d}x$$ is equal to: - (1) 4 - (2) 1 - (3) 6 - **(4)** 2 - 51. The negation of $\sim s \vee (\sim r \wedge s)$ is equivalent to: (1) $$s \wedge (r \wedge \sim s)$$ (2) $$s \vee (r \vee \sim s)$$ - (3) $s \wedge r$ - (4) $s \wedge \sim r$ $$\tan^{-1} y = \tan^{-1} x + \tan^{-1} \left(\frac{2x}{1 - x^2} \right),$$ $$(1) \quad \frac{3x + x^3}{1 - 3x^2}$$ $$(2) \quad \frac{3x - x^3}{1 + 3x^2}$$ $$(3) \quad \frac{3x + x^3}{1 + 3x^2}$$ (4) $$\frac{3x - x^3}{1 - 3x^2}$$ ### **50.** समाकल $$\int_{2}^{4} \frac{\log x^{2}}{\log x^{2} + \log (36 - 12x + x^{2})} dx$$ बराबर है: # 51. $\sim s \vee (\sim r \wedge s)$ का निषेध समतुल्य है : (1) $$s \wedge (r \wedge \sim s)$$ (2) $$s \vee (r \vee \sim s)$$ $$(3)$$ $s \wedge r$ $$(4) \quad s \land \sim r$$ - 52. If the angles of elevation of the top of a tower from three collinear points A, B and C, on a line leading to the foot of the tower, are 30°, 45° and 60° respectively, then the ratio, AB: BC, is: - (1) $\sqrt{3}:\sqrt{2}$ - (2) $1:\sqrt{3}$ - (3) 2:3 - (4) $\sqrt{3}:1$ - 53. $\lim_{x \to 0} \frac{(1 \cos 2x)(3 + \cos x)}{x \tan 4x}$ is equal to: - (1) 3 - (2) 2 - (3) $\frac{1}{2}$ - (4) 4 - 54. Let \overrightarrow{a} ,
\overrightarrow{b} and \overrightarrow{c} be three non-zero vectors such that no two of them are collinear and $$(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c} = \frac{1}{3} |\overrightarrow{b}| |\overrightarrow{c}| \overrightarrow{a}$$. If θ is the angle between vectors $\stackrel{\rightarrow}{b}$ and $\stackrel{\rightarrow}{c}$, then a value of $\sin\theta$ is : - $(1) \quad \frac{-\sqrt{2}}{3}$ - (2) $\frac{2}{3}$ - $(3) \quad \frac{-2\sqrt{3}}{3}$ - $(4) \qquad \frac{2\sqrt{2}}{3}$ - 52. तीन सरेख बिंदुओं A, B तथा C, एक ऐसी रेखा पर स्थित हैं जो एक मीनार के पाद की दिशा में ले जाती है, से एक मीनार के शिखर के उन्नयन कोण क्रमश: 30°, 45° तथा 60° हैं, तो AB: BC का अनुपात है: - (1) $\sqrt{3}:\sqrt{2}$ - (2) $1:\sqrt{3}$ - (3) 2:3 - (4) $\sqrt{3}:1$ - 53. $\lim_{x\to 0} \frac{(1-\cos 2x)(3+\cos x)}{x \tan 4x}$ बराबर है : - **(1)** 3 - (2) 2 - (3) $\frac{1}{2}$ - (4) 4 - 54. माना $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$ तथा $\stackrel{\rightarrow}{c}$ तीन शून्येतर ऐसे सदिश हैं कि उनमें से कोई दो संरेख नहीं हैं तथा $$(\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}) \times \stackrel{\rightarrow}{c} = \frac{1}{3} |\stackrel{\rightarrow}{b}| |\stackrel{\rightarrow}{c}| \stackrel{\rightarrow}{a} |\stackrel{\Rightarrow}{b}|$$ यदि सदिशों $\stackrel{\rightarrow}{b}$ तथा $\stackrel{\rightarrow}{c}$ के बीच का कोण θ है, तो $\sin\theta$ का एक मान है : - (1) $\frac{-\sqrt{2}}{3}$ - (2) $\frac{2}{3}$ - (3) $\frac{-2\sqrt{3}}{3}$ - (4) $\frac{2\sqrt{2}}{3}$ 55. If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix}$ is a matrix satisfying $\begin{bmatrix} 55 & 26 & 4 & 4 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix}$ एक ऐसा आव्यूह है जो the equation $AA^T = 9I$, where I is 3×3 identity matrix, then the ordered pair (a, b) is equal to: - (1) (-2, 1) - (2) - (3) (-2, -1) - **(4)** - If the function. 56. $$g(x) = \begin{cases} k\sqrt{x+1} & , & 0 \le x \le 3 \\ mx+2 & , & 3 < x \le 5 \end{cases}$$ is differentiable, then the value of k + m is : - (1) - (2) - (3) - 2 **(4)** - The set of all values of λ for which the 57. system of linear equations: $$2x_1 - 2x_2 + x_3 = \lambda x_1$$ $$2x_1 - 3x_2 + 2x_3 = \lambda x_2$$ $$-x_1 + 2x_2 = \lambda x_3$$ has a non-trivial solution, - **(1)** is a singleton. - (2)contains two elements. - (3) contains more than two elements. - **(4)** is an empty set. आव्यृह समीकरण $AA^{T}=9I$, को संतुष्ट करता है, जहाँ I, 3×3 का तत्समक आव्यूह है, तो क्रमित युग्म (a, b) का मान है : - (1) (-2, 1) - यदि फलन $$g(x) = \begin{cases} k\sqrt{x+1} & , \ 0 \le x \le 3 \\ mx+2 & , \ 3 < x \le 5 \end{cases}$$ अवकलनीय है, तो k+m का मान है : - λ के सभी मानों का समुच्चय, जिनके लिए रैखिक 57. समीकरण निकाय $$2x_1 - 2x_2 + x_3 = \lambda x_1$$ $$2x_1 - 3x_2 + 2x_3 = \lambda x_2$$ $$-x_1 + 2x_2 = \lambda x_3$$ का एक अतुच्छ हल है, - (1) एक एकल समुच्चय है। - (2) में दो अवयव हैं। - (3) में दो से अधिक अवयव हैं। - एक रिक्त समुच्चय है। | 58. | The | normal | to | the | curve, | |------------|------------|--------------------|----------|-----|--------| | | $x^2 + 2x$ | $cy - 3y^2 = 0, a$ | at (1, 1 | .): | | - (1) meets the curve again in the second quadrant. - (2) meets the curve again in the third quadrant. - (3) meets the curve again in the fourth quadrant. - (4) does not meet the curve again. **59.** The number of common tangents to the circles $$x^2 + y^2 - 4x - 6y - 12 = 0$$ and $x^2 + y^2 + 6x + 18y + 26 = 0$, is : - (1) 2 - (2) 3 - (3) 4 - (4) 1 **60.** Let $$y(x)$$ be the solution of the differential equation $$(x \log x) \frac{\mathrm{d}y}{\mathrm{d}x} + y = 2x \log x, (x \ge 1).$$ Then y(e) is equal to: - (1) 0 - (2) 2 - (3) 2e - (4) e 58. वक्र $$x^2 + 2xy - 3y^2 = 0$$ के बिंदु (1, 1) पर अभिलम्ब : - (1) वक्र को दोबारा द्वितीय चतुर्थांश में मिलता है। - (2) वक्र को दोबारा तृतीय चतुर्थांश में मिलता है। - (3) वक्र को दोबारा चतुर्थ चतुर्थाश में मिलता है। - (4) वक्र को दोबारा नहीं मिलता। 59. वृत्तों $$x^2+y^2-4x-6y-12=0$$ तथा $x^2+y^2+6x+18y+26=0$ की उभयनिष्ठ स्पर्श रेखाओं की संख्या है : - (1) 2 - (2) 3 - (3) 4 - **(4)** 1 $$(x \log x) \frac{dy}{dx} + y = 2x \log x, (x \ge 1)$$ का हल $y(x)$ है, तो $y(e)$ बराबर है : - (1) 0 - (2) 2 - (3) 2e - (4) e ### PART C - PHYSICS - **61.** As an electron makes a transition from an excited state to the ground state of a hydrogen like atom/ion: - (1) kinetic energy, potential energy and total energy decrease - (2) kinetic energy decreases, potential energy increases but total energy remains same - (3) kinetic energy and total energy decrease but potential energy increases - (4) its kinetic energy increases but potential energy and total energy decrease - 62. The period of oscillation of a simple $pendulum \ is \ T = 2\pi \sqrt{\frac{L}{g}} \ .$ Measured value of L is 20.0 cm known to 1 mm accuracy and time for 100 oscillations of the pendulum is found to be 90 s using a wrist watch of 1s resolution. The accuracy in the determination of g is : - (1) 3% - (2) 1% - (3) 5% - (4) 2% ## भाग C - भौतिक विज्ञान - 61. जब कोई इलेक्ट्रॉन, हाइड्रोजन जैसे परमाणु /आयन की उत्तेजित अवस्था से न्यूनतम ऊर्जा अवस्था में संक्रमण करता है तो उसकी : - (1) गतिज ऊर्जा, स्थितिज ऊर्जा तथा कुल ऊर्जा में कमी हो जाती है। - (2) गतिज ऊर्जा कम होती है, स्थितिज ऊर्जा बढ़ती है और कुल ऊर्जा वही रहती है। - (3) गतिज ऊर्जा व कुल ऊर्जा कम हो जाती हैं किन्तु, स्थितिज ऊर्जा बढ़ जाती है। - (4) गतिज ऊर्जा में वृद्धि तथा स्थितिज ऊर्जा तथा कुल ऊर्जा में कमी होती है। - **62.** किसी सरल लोलक का आवर्त, $T=2\pi\sqrt{\frac{L}{g}}$ है। L का मापित मान $20.0~\rm cm$ है, जिसकी यथार्थता $1~\rm mm$ है। इस लोलक के $100~\rm cl$ लनों का समय $90~\rm s$ है, जिसे $1\rm s$ विभेदन की घड़ी से नापा गया है। तो, g के निर्धारण में यथार्थता होगी : - (1) 3% - (2) 1% - (3) 5% - (4) 2% A long cylindrical shell carries positive 63. surface charge o in the upper half and negative surface charge $-\sigma$ in the lower half. The electric field lines around the cylinder will look like figure given in: (figures are schematic and not drawn to scale) किसी लम्बे बेलनाकार कोश के ऊपरी भाग में धनात्मक पुष्ठ आवेश σ तथा निचले भाग में ऋणात्मक पुष्ठ - 5 kHz आवृत्ति के किसी संकेत (सिग्नल) का 64. 2 MHz आवृत्ति की वाहक तरंग पर आयाम मॉड्लन किया गया है। तो, परिणामी सिग्नल (संकेत) की आवृत्ति होगी: - (1)2005 kHz, and 1995 kHz - (1) 2005 kHz, तथा 1995 kHz - 2005 kHz, 2000 kHz and 1995 kHz (2) - 2005 kHz, 2000 kHz तथा 1995 kHz (2) (3)2000 kHz and 1995 kHz (3)2000 kHz तथा 1995 kHz (4)2 MHz only 2 MHz केवल **(4)** - 65. Consider a spherical shell of radius R at temperature T. The black body radiation inside it can be considered as an ideal gas of photons with internal energy per unit volume $u = \frac{U}{V} \propto T^4$ and pressure $p = \frac{1}{3} \left(\frac{U}{V} \right)$. If the shell now undergoes an adiabatic expansion the relation - (1) $T \propto e^{-3R}$ between T and R is: - (2) $T \propto \frac{1}{R}$ - (3) $T \propto \frac{1}{R^3}$ - (4) $T \propto e^{-R}$ - 66. An inductor (L=0.03H) and a resistor (R=0.15 k Ω) are connected in series to a battery of 15V EMF in a circuit shown below. The key K₁ has been kept closed for a long time. Then at t=0, K₁ is opened and key K₂ is closed simultaneously. At t=1ms, the current in the circuit will be: $(e^5 \cong 150)$ - (1) 67 mA - (2) 6.7 mA - (3) 0.67 mA - (4) 100 mA 55. किसी गोलीय कोश (शैल) की ऋिज्या R है और इसका ताप T है। इसके भीतर कृष्णिका विकिरणों को फोटॉनों की एक ऐसी आदर्श गैस माना जा सकता है जिसकी प्रित इकाई आयतन आन्तरिक ऊर्जा, $u = \frac{U}{V} \propto T^4$ तथा दाब, $p = \frac{1}{3} \left(\frac{U}{V}\right)$ है। यदि इस कोश में रुद्धोष्म प्रसार हो तो, T तथा R के बीच संबंध होगा : (1) $$T \propto e^{-3R}$$ (2) $$T \propto \frac{1}{R}$$ (3) $$T \propto \frac{1}{R^3}$$ (4) $$T \propto e^{-R}$$ 66. दर्शाये गये परिपथ में, एक प्रेरक (L=0.03H) तथा एक प्रतिरोधक (R=0.15 k Ω) िकसी 15V विद्युत वाहक बल (ई.एम.एफ) की बैटरी से जुड़े हैं। कुंजी K_1 को बहुत समय तक बन्द रखा गया है। इसके पश्चात् समय t=0 पर, K_1 को खोल कर साथ ही साथ, K_2 को बन्द िकया जाता है। समय t=1ms पर, परिपथ में विद्युत धारा होगी : $(e^5 \cong 150)$ - (1) 67 mA - (2) 6.7 mA - (3) 0.67 mA - (4) 100 mA A pendulum made of a uniform wire of 67. cross sectional area A has time period T. When an additional mass M is added to its bob, the time period changes to T_M. If the Young's modulus of the material of the wire is Y then $\frac{1}{Y}$ is equal to : $(g = gravitational\ acceleration)$ (1) $$\left[\left(\frac{T_{\rm M}}{T} \right)^2 - 1 \right] \frac{Mg}{A}$$ (2) $$\left[1 - \left(\frac{T_{\rm M}}{T} \right)^2 \right] \frac{A}{Mg}$$ (3) $$\left[1 - \left(\frac{T}{T_{\rm M}} \right)^2 \right] \frac{A}{Mg}$$ (4) $$\left[\left(\frac{T_{\rm M}}{T} \right)^2 - 1 \right] \frac{A}{Mg}$$ A red LED emits light at 0.1 watt uniformly 68. around it. The amplitude of the electric field of the light at a distance of 1 m from the diode is: B/Page 25 किसी एकसमान तार की अनुप्रस्थकाट का क्षेत्रफल 'A' है। इससे बनाये गये एक लोलक का आवर्तकाल T है। इस लोलक के गोलक से एक अतिरिक्त M द्रव्यमान जोड़ देने से लोलक का आवर्तकाल परिवर्तित होकर T_M हो जाता है। यदि इस तार के पदार्थ का यंग गुणांक 'Y' हो तो $\frac{1}{V}$ का मान होगा : (१ = गुरुत्वीय त्वरण) (1) $$\left[\left(\frac{T_{\rm M}}{T} \right)^2 - 1 \right] \frac{Mg}{A}$$ (2) $$\left[1 - \left(\frac{T_{\rm M}}{T}\right)^2\right] \frac{A}{Mg}$$ (3) $$\left[1 - \left(\frac{T}{T_{\rm M}} \right)^2 \right] \frac{A}{Mg}$$ (4) $$\left[\left(\frac{T_{\rm M}}{T} \right)^2 - 1 \right] \frac{A}{Mg}$$ एक लाल रंग का एल.ई.डी. (प्रकाश उत्सर्जक डायोड) 68. 0.1 वाट पर, एकसमान प्रकाश उत्सर्जित करता है। डायोड से 1 m दूरी पर, इस प्रकाश के विद्युत क्षेत्र का आयाम होगा : - 69. Two coaxial solenoids of different radii carry current I in the same direction. Let $\overrightarrow{F_1}$ be the magnetic force on the inner solenoid due to the outer one and $\overrightarrow{F_2}$ be the magnetic force on the outer solenoid due to the inner one. Then: - (1) $\overrightarrow{F_1}$ is radially inwards and $\overrightarrow{F_2}$ is radially
outwards - (2) $\overrightarrow{F_1}$ is radially inwards and $\overrightarrow{F_2} = 0$ - (3) $\overrightarrow{F_1}$ is radially outwards and $\overrightarrow{F_2} = 0$ - $(4) \quad \overrightarrow{F_1} = \overrightarrow{F_2} = 0$ - 70. Consider an ideal gas confined in an isolated closed chamber. As the gas undergoes an adiabatic expansion, the average time of collision between molecules increases as V^q , where V is the volume of the gas. The value of q is : $$\left(\gamma = \frac{C_p}{C_v}\right)$$ - $(1) \qquad \frac{3\gamma 5}{6}$ - (2) $\frac{\gamma+1}{2}$ - $(3) \quad \frac{\gamma 1}{2}$ - $(4) \qquad \frac{3\gamma + 5}{6}$ - 69. दो समाक्षी परिनालिकाओं में, प्रत्येक से I धारा एक ही दिशा में प्रवाहित हो रही है। यदि, बाहरी परिनालिका के कारण, भीतरी परिनालिका पर चुम्बकीय बल $\overrightarrow{F_1}$ तथा भीतरी परिनालिका के कारण, बाहरी परिनालिका पर चुम्बकीय बल $\overrightarrow{F_2}$ हो तो : - (1) $\overrightarrow{F_1}$ भीतर की ओर व अरीय (त्रिज्य) है और $\overrightarrow{F_2}$ बाहर की ओर व अरीय है। - (2) $\overrightarrow{F_1}$ भीतर की ओर व अरीय है तथा $\overrightarrow{F_2}=0$ है। - (3) $\overrightarrow{F_1}$ बाहर की ओर व अरीय है तथा $\overrightarrow{F_2}=0$ है। - $(4) \qquad \overrightarrow{F_1} = \overrightarrow{F_2} = 0$ - 70. एक आदर्श गैस किसी बन्द (संवृत), वियुक्त (विलिगित) कक्ष में सीमित (रखी) है। इस गैस में रुद्धोष्म प्रसार होने पर, इसके अणुओं के बीच टक्कर का औसत काल (समय) V^Q के अनुसार बढ़ जाता है, जहाँ V गैस का आयतन है। तो Q का मान होगा: $$\left(\gamma = \frac{C_p}{C_v}\right)$$ - $(1) \quad \frac{3\gamma 5}{6}$ - $(2) \qquad \frac{\gamma+1}{2}$ - $(3) \qquad \frac{\gamma 1}{2}$ - $(4) \qquad \frac{3\gamma + 5}{6}$ 71. An LCR circuit is equivalent to a damped pendulum. In an LCR circuit the capacitor is charged to Q_0 and then connected to the L and R as shown below: If a student plots graphs of the square of maximum charge ($Q_{\rm Max}^2$) on the capacitor with time(t) for two different values L_1 and L_2 (L_1 > L_2) of L then which of the following represents this graph correctly ? (plots are schematic and not drawn to scale) 71. LCR (एल.सी.आर) परिपथ किसी अवमंदित लोलक के तुल्य होता है। किसी LCR परिपथ में संधारित्र को Q_0 तक आवेशित किया गया है, और फिर इसे आरेख में दर्शाये गये अनुसार L व R से जोड़ा गया है। यदि एक विद्यार्थी L के, दो विभिन्न मानों, L_1 तथा L_2 ($L_1 > L_2$) के लिये, समय t तथा संधारित्र पर अधिकतम आवेश के वर्ग $Q^2_{\rm Max}$ के बीच दो ग्राफ बनाता है तो निम्नांकित में से कौन सा ग्राफ सही है? (प्लॉट केवल व्यवस्था प्लॉट हैं तथा स्केल के अनुसार नहीं हैं) 72. From a solid sphere of mass M and radius R, a spherical portion of radius $\frac{R}{2}$ is removed, as shown in the figure. Taking gravitational potential V=0 at $r=\infty$, the potential at the centre of the cavity thus formed is: (G = gravitational constant) - $(1) \quad \frac{-\mathsf{GM}}{\mathsf{R}}$ - $(2) \quad \frac{-2GM}{3R}$ - $(3) \quad \frac{-2GM}{R}$ - $(4) \quad \frac{-\text{ GM}}{2R}$ - 73. A train is moving on a straight track with speed 20 ms^{-1} . It is blowing its whistle at the frequency of 1000 Hz. The percentage change in the frequency heard by a person standing near the track as the train passes him is (speed of sound = 320 ms⁻¹) close to: - (1) 12% - (2) 18% - (3) 24% - (4) 6% 72. एक ठोस गोले का द्रव्यमान M तथा त्रिज्या R है। इससे $\frac{R}{2}$ त्रिज्या का एक गोलीय भाग, आरेख में दर्शाय गये अनुसार काट लिया जाता है। $r=\infty$ (अनन्त) पर गुरुत्वीय विभव के मान V को शून्य (V=0) मानते हुए, इस प्रकार बने कोटर (कैविटी) के केन्द्र पर, गुरुत्वीय विभव का मान होगा: (G = गुरुत्वीय स्थिराँक है) - $(1) \quad \frac{-\mathsf{GM}}{\mathsf{R}}$ - $(2) \quad \frac{-2GM}{3R}$ - $(3) \quad \frac{-2GM}{R}$ - $(4) \quad \frac{-\text{ GM}}{2R}$ - 73. एक ट्रेन (रेलगाड़ी) सीधी पटरियों पर $20~\mathrm{ms}^{-1}$ की चाल से गित कर रही है। इसकी सीटी की ध्वनि की आवृत्ति $1000~\mathrm{Hz}$ है। यदि ध्वनि की वायु में चाल $320~\mathrm{ms}^{-1}$ हो तो, पटरियों के निकट खड़े व्यक्ति के पास से ट्रेन के गुजरने पर, उस व्यक्ति द्वारा सुनी गई सीटी की ध्वनि की आवृत्ति में प्रतिशत परिवर्तन होगा लगभग: - (1) 12% - (2) 18% - (3) 24% - (4) 6% Given in the figure are two blocks A and B of weight 20 N and 100 N, respectively. These are being pressed against a wall by a force F as shown. If the coefficient of friction between the blocks is 0.1 and between block B and the wall is 0.15, the frictional force applied by the wall on block B is: - (1) 80 N - (2) 120 N - (3) 150 N - (4) 100 N - 75. Distance of the centre of mass of a solid uniform cone from its vertex is z_0 . If the radius of its base is R and its height is h then z_0 is equal to : - $(1) \quad \frac{3h}{4}$ - (2) $\frac{5h}{8}$ - $(3) \quad \frac{3h^2}{8R}$ - $(4) \qquad \frac{h^2}{4R}$ यहाँ आरेख में दो ब्लॉक (गुटके) A और B दर्शाये गये हैं जिनके भार क्रमश: 20 N तथा 100 N हैं। इन्हें, एक बल F द्वारा किसी दीवार पर दबाया जा रहा है। यदि घर्षण गुणांक का मान, A तथा B के बीच 0.1 तथा B और दीवार के बीच 0.15 है तो, दीवार द्वारा ब्लॉक B पर लगा बल होगा: - (1) 80 N - (2) 120 N - (3) 150 N - (4) 100 N - 75. किसी एकसमान ठोस शंकु के द्रव्यमान केन्द्र की उसके शीर्ष से दूरी z_0 है। यदि शंकु के आधार की त्रिज्या R तथा शंकु की ऊँचाई h हो तो z_0 का मान निम्नांकित में से किसके बराबर होगा? - $(1) \quad \frac{3h}{4}$ - (2) $\frac{5h}{8}$ - $(3) \quad \frac{3h^2}{9P}$ - $(4) \quad \frac{h^2}{4R}$ **76.** A rectangular loop of sides 10 cm and 5 cm carrying a current I of 12 A is placed in different orientations as shown in the figures below: If there is a uniform magnetic field of 0.3 T in the positive z direction, in which orientations the loop would be in (i) stable equilibrium and (ii) unstable equilibrium? - (1) (a) and (c), respectively - (2) (b) and (d), respectively - (3) (b) and (c), respectively - (4) (a) and (b), respectively 76. 10 cm तथा 5 cm भुजाओं के एक आयताकार लूप (पाश) से एक विद्युत धारा, I = 12 A, प्रवाहित हो रही है। इस पाश को आरेख में दर्शाये गये अनुसार विभिन्न अभिविन्यासों (स्थितियों) में रखा गया है। यदि वहाँ 0.3 T तीव्रता का कोई एकसमान चुम्बकीय क्षेत्र, धनात्मक z दिशा में विद्यमान है तो, दर्शाये गये किस अभिविन्यास में, यह पाश (लूप) (i) स्थायी संतुलन तथा (ii) अस्थायी संतुलन में, होगा? - (1) क्रमश: (a) तथा (c) में - (2) क्रमशः (b) तथा (d) में - (3) क्रमशः (b) तथा (c) में - (4) क्रमश: (a) तथा (b) में 77. $$\begin{array}{c|c} 6V & P 2\Omega \\ \hline & & \\ & & \\ \hline & & \\$$ In the circuit shown, the current in the 1Ω resistor is : - (1) 0A - (2) 0.13 A, from Q to P - (3) 0.13 A, from P to Q - (4) 1.3 A, from P to Q - 78. A uniformly charged solid sphere of radius R has potential V_0 (measured with respect to ∞) on its surface. For this sphere the equipotential surfaces with potentials $\frac{3V_0}{2}, \frac{5V_0}{4}, \frac{3V_0}{4} \text{ and } \frac{V_0}{4} \text{ have radius } R_1, \\ R_2, R_3 \text{ and } R_4 \text{ respectively. Then}$ (1) $$R_1 \neq 0$$ and $(R_2 - R_1) > (R_4 - R_3)$ - (2) $R_1 = 0$ and $R_2 < (R_4 R_3)$ - $(3) \quad 2R < R_4$ - (4) $R_1 = 0$ and $R_2 > (R_4 R_3)$ 77. $$\begin{array}{c|c} 6V & P 2\Omega \\ \hline 1\Omega & 9V \end{array}$$ दर्शाये गये परिपथ में 1Ω प्रतिरोधक से प्रवाहित धारा होगी : - (1) 0 (शून्य) A - (2) 0.13 A, Q से P को - (3) 0.13 A, P से Q को - (4) 1.3 A, P से Q की ओर - 78. R त्रिज्या के किसी एकसमान आवेशित ठोस गोले के पृष्ठ का विभव V_0 है (∞ के सापेक्ष मापा गया)। इस गोले के लिये, $\frac{3V_0}{2}$, $\frac{5V_0}{4}$, $\frac{3V_0}{4}$ तथा $\frac{V_0}{4}$ विभवों वाले समविभवी पृष्ठों की त्रिज्यायें, क्रमशः R_1 , R_2 , R_3 तथा R_4 हैं। तो, - (1) R₁ ≠ 0 तथा (R₂ R₁) > (R₄ R₃) - (2) $R_1 = 0$ तथा $R_2 < (R_4 R_3)$ - (3) $2R < R_4$ - (4) $R_1 = 0$ तथा $R_2 > (R_4 R_3)$ 79. In the given circuit, charge
Q_2 on the $2\mu F$ capacitor changes as C is varied from $1\mu F$ to $3\mu F$. Q_2 as a function of 'C' is given properly by : (figures are drawn schematically and are not to scale) - **80.** A particle of mass m moving in the x direction with speed 2v is hit by another particle of mass 2m moving in the y direction with speed v. If the collision is perfectly inelastic, the percentage loss in the energy during the collision is close to: - (1) 50% - (2) 56% - (3) 62% - (4) 44% 79. दिये गये परिपथ में, C के मान के $1\mu F$ से $3\mu F$ परिवर्तित होने से, $2\mu F$ संधारित्र पर आवेश Q_2 में परिवर्तन होता है। 'C' के फलन के रूप में Q_2 को कौन सा आलेख सही दर्शाता है? (आलेख केवल व्यवस्था आरेख हैं और स्केल के अनुसार नहीं हैं।) - 80. x-दिशा में 2v चाल से चलते हुए m द्रव्यमान के एक कण से, y-दिशा में v वेग से चलता हुआ 2m द्रव्यमान का एक कण, टकराता है। यदि यह संघट्ट (टक्कर) पूर्णत: अप्रत्यास्थ है तो, टक्कर के दौरान ऊर्जा का क्षय (हानि) होगी: - (1) 50% - (2) 56% - (3) 62% - (4) 44% 81. Monochromatic light is incident on a glass prism of angle A. If the refractive index of the material of the prism is μ , a ray, incident at an angle θ , on the face AB would get transmitted through the face AC of the prism provided : - (1) $\theta < \sin^{-1} \left[\mu \sin \left(A \sin^{-1} \left(\frac{1}{\mu} \right) \right) \right]$ - (2) $\theta > \cos^{-1} \left[\mu \sin \left(A + \sin^{-1} \left(\frac{1}{\mu} \right) \right) \right]$ - (3) $\theta < \cos^{-1} \left[\mu \sin \left(A + \sin^{-1} \left(\frac{1}{\mu} \right) \right) \right]$ - (4) $\theta > \sin^{-1} \left[\mu \sin \left(A \sin^{-1} \left(\frac{1}{\mu} \right) \right) \right]$ - 82. From a solid sphere of mass M and radius R a cube of maximum possible volume is cut. Moment of inertia of cube about an axis passing through its center and perpendicular to one of its faces is: - $(1) \qquad \frac{MR^2}{16\sqrt{2}\pi}$ - $(2) \quad \frac{4MR^2}{9\sqrt{3}\pi}$ - $(3) \quad \frac{4MR^2}{3\sqrt{3}\pi}$ - $(4) \quad \frac{MR^2}{32\sqrt{2}\pi}$ 81. कॉंच के किसी प्रिज्म का कोण 'A' है। इस पर एकवर्णी प्रकाश आपितत होता है। यदि, प्रिज्म के पदार्थ का अपवर्तनांक μ है तो, प्रिज्म के AB फलक पर, θ कोण आपितत प्रकाश की किरण, प्रिज्म के फलक AC से पारगत होगी यदि: - (1) $\theta < \sin^{-1} \left[\mu \sin \left(A \sin^{-1} \left(\frac{1}{\mu} \right) \right) \right]$ - (2) $\theta > \cos^{-1} \left[\mu \sin \left(A + \sin^{-1} \left(\frac{1}{\mu} \right) \right) \right]$ - (3) $\theta < \cos^{-1} \left[\mu \sin \left(A + \sin^{-1} \left(\frac{1}{\mu} \right) \right) \right]$ - (4) $\theta > \sin^{-1} \left[\mu \sin \left(A \sin^{-1} \left(\frac{1}{\mu} \right) \right) \right]$ - 82. किसी ठोस गोले का द्रव्यमान M तथा इसकी त्रिज्या R है। इसमें से अधिकतम संभव आयतन का एक क्यूब (घन) काट लिया जाता है। इस क्यूब का जड़त्व आघूर्ण कितना होगा, यदि, इसकी घूर्णन-अक्ष, इसके केन्द्र से होकर गुज़रती है तथा इसके किसी एक फलक के लम्बवत है? - $(1) \quad \frac{MR^2}{16\sqrt{2}\tau}$ - (2) $\frac{4MR^2}{9\sqrt{3}\pi}$ - $(3) \quad \frac{4MR^2}{3\sqrt{3}\pi}$ - $(4) \quad \frac{MR^2}{32\sqrt{2}\pi}$ 83. Match List - I (Fundamental Experiment) with List - II (its conclusion) and select the correct option from the choices given below the list: | | List - I | | List - II | |-----|---------------------------------|-------|-----------------------------------| | (A) | Franck-Hertz
Experiment. | (i) | Particle nature of light | | (B) | Photo-electric experiment. | (ii) | Discrete energy
levels of atom | | (C) | Davison - Germer
Experiment. | (iii) | Wave nature of electron | | | | (iv) | Structure of atom | - (1) (A) (ii) (B) (iv) (C) (iii) - (2) (A) (ii) (B) (i) (C) (iii) - (3) (A) -(iv) (B) (iii) (C) (ii) - (4) (A) (i) (B) (iv) (C) (iii) - 84. When 5V potential difference is applied across a wire of length 0.1 m, the drift speed of electrons is 2.5×10^{-4} ms⁻¹. If the electron density in the wire is 8×10^{28} m⁻³, the resistivity of the material is close to: - (1) $1.6 \times 10^{-7} \Omega m$ - (2) $1.6 \times 10^{-6} \Omega m$ - (3) $1.6 \times 10^{-5} \Omega \text{m}$ - (4) $1.6 \times 10^{-8} \Omega \text{m}$ 83. सूची-I (मूल प्रयोग) का सूची-II (उसके परिणाम) के साथ सुमेलन (मैच) कीजिये और निम्नांकित विकल्पों में से सही विकल्प का चयन कीजिये: | | सूची - I | | सूची - II | |-----|-----------------------|-------|-------------------------------| | (A) | फ्रेंक हर्ट्स प्रयोग | (i) | प्रकाश की कणिका
प्रकृति | | (B) | प्रकाश विद्युत प्रयोग | (ii) | अणु के विविक्त
ऊर्जा स्तर | | (C) | डेवीसन जर्मर प्रयोग | (iii) | इलेक्ट्रॉन की तरंग
प्रकृति | | | | (iv) | परमाणु की संरचना | - (1) (A) (ii) (B) (iv) (C) (iii) - (2) (A) (ii) (B) (i) (C) (iii) - (3) (A) -(iv) (B) (iii) (C)- (ii) - (4) (A) (i) (B) (iv) (C) (iii) - **84.** $0.1\,\mathrm{m}$ लंबे किसी तार के सिरों के बीच 5V विभवांतर आरोपित करने से इलेक्ट्रॉनों की अपवाह चाल $2.5\times10^{-4}\,\mathrm{ms}^{-1}$ होती है। यदि इस तार में इलेक्ट्रॉन घनत्व $8\times10^{28}\,\mathrm{m}^{-3}$ हो तो, इस के पदार्थ की प्रतिरोधकता होगी, लगभग : - (1) $1.6 \times 10^{-7} \Omega \text{m}$ - (2) $1.6 \times 10^{-6} \Omega m$ - (3) $1.6 \times 10^{-5} \Omega m$ - (4) $1.6 \times 10^{-8} \Omega m$ - 85. For a simple pendulum, a graph is plotted between its kinetic energy (KE) and potential energy (PE) against its displacement d. Which one of the following represents these correctly ? (graphs are schematic and not drawn to scale) - 85. किसी सरल लोलक के लिये, उसके विस्थापन d तथा उसकी गतिज ऊर्जा के बीच और विस्थापन d तथा उसकी स्थितिज ऊर्जा के बीच ग्राफ खींचे गये हैं। निम्नांकित में से कौन सा ग्राफ (आलेख) सही है? (यहाँ ग्राफ केवल व्यवस्था आरेख हैं और स्केल के अनुसार नहीं हैं) 86. Two stones are thrown up simultaneously from the edge of a cliff 240 m high with initial speed of 10 m/s and 40 m/s respectively. Which of the following graph best represents the time variation of relative position of the second stone with respect to the first? (Assume stones do not rebound after hitting the ground and neglect air resistance, take $g = 10 \text{ m/s}^2$) (The figures are schematic and not drawn to scale) 86. किसी 240 m ऊँची चोटी के एक किनारे से, दो पत्थरों को एकसाथ ऊपर की ओर फेंका गया है, इनकी प्रारंभिक चाल क्रमश: 10 m/s तथा 40 m/s है, तो, निम्नांकित में से कौनसा ग्राफ (आलेख) पहले पत्थर के सापेक्ष दूसरे पत्थर की स्थित के समय विचरण (परिवर्तन) को सर्वाधिक सही दर्शाता है? (मान लीजिए कि, पत्थर जमीन से टकराने के पश्चात ऊपर की ओर नहीं उछलते हैं तथा वायु का प्रतिरोध नगण्य है, दिया है $g=10~\mathrm{m/s^2}$) (यहाँ ग्राफ केवल व्यवस्था आरेख हैं और स्केल के अनुसार नहीं हैं) - 87. A solid body of constant heat capacity 1 J/°C is being heated by keeping it in contact with reservoirs in two ways: - (i) Sequentially keeping in contact with 2 reservoirs such that each reservoir supplies same amount of heat. - (ii) Sequentially keeping in contact with 8 reservoirs such that each reservoir supplies same amount of heat. In both the cases body is brought from initial temperature 100°C to final temperature 200°C. Entropy change of the body in the two cases respectively is: - (1) ln2, ln2 - (2) ln2, 2ln2 - (3) 2ln2, 8ln2 - (4) ln2, 4ln2 - 88. Assuming human pupil to have a radius of 0.25 cm and a comfortable viewing distance of 25 cm, the minimum separation between two objects that human eye can resolve at 500 nm wavelength is: - (1) $30 \mu m$ - (2) 100 μm - (3) $300 \mu m$ - (4) $1 \mu m$ - 87. एक ठोस पिंड (वस्तु) की स्थिर ऊष्मा धारिता 1 J/°C है। इसको ऊष्मकों (ऊष्मा भंडारों) के सम्पर्क में रखकर निम्न दो प्रकार से गर्म किया जाता है. - (i) अनुक्रमिक रूप से 2 ऊष्मकों के सम्पर्क में इस प्रकार रखकर कि प्रत्येक ऊष्मक समान मात्रा में ऊष्मा देता है. - (ii) अनुक्रमिक रूप से 8 ऊष्मकों के सम्पर्क में इस प्रकार रखकर कि प्रत्येक ऊष्मक समान मात्रा में ऊष्मा देता है, दोनों स्थितियों में पिंड का प्रारंभिक ताप 100°C तथा अन्तिम ताप 200°C है। तो, इन दो स्थितियों में पिंड की एन्ट्रॉपी में परिवर्तन होगा, क्रमशः - (1) ln2, ln2 - (2) ln2, 2ln2 - (3) 2ln2, 8ln2 - (4) ln2, 4ln2 - 88. यदि मानव नेत्र की पुतली की त्रिज्या 0.25 cm, और स्पष्ट सुविधा जनक देखने की दूरी 25 cm हो तो, 500 nm तरंगदैर्घ्य के प्रकाश में, दो वस्तुओं के बीच कितनी न्यूनतम दूरी तक मानव नेत्र उन दोनों के बीच विभेदन कर सकेगा? - (1) $30 \mu m$ - (2) $100 \mu m$ - (3) 300 μm - (4) $1 \mu m$ Two long current carrying thin wires, both with current I, are held by insulating threads of length L and are in equilibrium as shown in the figure, with threads making an angle ' θ ' with the vertical. If wires have mass λ per unit length then the value of I is : $(g = gravitational\ acceleration)$ $$(1) \qquad 2 \sin\!\theta \, \sqrt{\frac{\pi \lambda g L}{\mu_0 \, \cos\!\theta}}$$ (2) $$2\sqrt{\frac{\pi gL}{\mu_0}}\tan\theta$$ (3) $$\sqrt{\frac{\pi \lambda g L}{\mu_0}} \tan \theta$$ (4) $$\sin\theta \sqrt{\frac{\pi \lambda g L}{\mu_0 \cos\theta}}$$ - 90. On a hot summer night, the refractive index of air is smallest near the ground and increases with height from the ground. When a light beam is directed horizontally, the Huygens' principle leads us to conclude that as it travels, the light beam: - (1) goes horizontally without any deflection - (2) bends downwards - (3) bends upwards - (4) becomes narrower - o 0 o - 89. दो पतले लम्बे तारों में प्रत्येक से I धारा प्रवाहित हो रही है। इन्हें L लम्बाई के विद्युतरोधी धागों से लटकाया गया है। इन धागों में प्रत्येक के द्वारा ऊर्ध्वाधर दिशा से ' θ ' कोण बनाने की स्थिति में, ये दोनों तार साम्यावस्था में रहते हैं। यदि इन तारों की प्रति इकाई लम्बाई द्रव्यमान λ है तथा g गुरुत्वीय त्वरण है तो, I का मान होगा: $$(1) 2\sin\theta \sqrt{\frac{\pi\lambda gL}{\mu_0 \cos\theta}}$$ (2) $$2\sqrt{\frac{\pi gL}{\mu_0}}\tan\theta$$ (3) $$\sqrt{\frac{\pi \lambda g L}{\mu_0}} \tan \theta$$ (4) $$\sin\theta \sqrt{\frac{\pi \lambda g L}{\mu_0 \cos\theta}}$$ - 90. ग्रीष्म ऋतु की गर्म रात्रि में, भू-तल के निकट, वायु का अपवर्तनांक न्यूनतम होता है और भू-तल से ऊँचाई के साथ बढ़ता जाता है। यदि, कोई प्रकाश-किरण-पुंज क्षैतिज दिशा में जा रहा हो तो, हाइगेन्स के सिद्धान्त से यह परिणाम प्राप्त होता है
कि, चलते हुए प्रकाश-किरण पुंज: - (1) बिना विक्षेपित हुए, क्षैतिज दिशा में चलता रहेगा। - (2) नीचे की ओर झुक जायेगा। - (3) ऊपर की ओर झुक जायेगा। - (4) संकुचित (संकीर्ण) हो जायेगा। - o 0 o - # SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह ### Read the following instructions carefully: - The candidates should fill in the required particulars on the Test Booklet and Answer Sheet (Side-1) with Blue/Black Ball Point Pen. - 2. For writing/marking particulars on Side-2 of the Answer Sheet, use Blue/Black Ball Point Pen only. - The candidates should not write their Roll Numbers anywhere else (except in the specified space) on the Test Booklet/Answer Sheet. - Out of the four options given for each question, only one option is the correct answer. - 5. For each incorrect response, one-fourth (1/4) of the total marks allotted to the question would be deducted from the total score. No deduction from the total score, however, will be made if no response is indicated for an item in the Answer Sheet. - Handle the Test Booklet and Answer Sheet with care, as under no circumstances (except for discrepancy in Test Booklet Code and Answer Sheet Code), another set will be provided. - 7. The candidates are not allowed to do any rough work or writing work on the Answer Sheet. All calculations/ writing work are to be done in the space provided for this purpose in the Test Booklet itself, marked 'Space for Rough Work'. This space is given at the bottom of each page and in one page (i.e. Page 39) at the end of the booklet. - On completion of the test, the candidates must hand over the Answer Sheet to the Invigilator on duty in the Room/Hall. However, the candidates are allowed to take away this Test Booklet with them. - Each candidate must show on demand his/her Admit Card to the Invigilator. - No candidate, without special permission of the Superintendent or Invigilator, should leave his/her seat. - 11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet again. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case. The candidates are also required to put their left hand THUMB impression in the space provided in the Attendance Sheet. - Use of Electronic/Manual Calculator and any Electronic device like mobile phone, pager etc. is prohibited. - 13. The candidates are governed by all Rules and Regulations of the JAB/Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the JAB/Board. - 14. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances. - 15. Candidates are not allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, electronic device or any other material except the Admit Card inside the examination room/hall. ### निम्नलिखित निर्देश ध्यान से पहें : - परीक्षार्थियों को परीक्षा पुस्तिका और उत्तर पत्र (पृष्ठ -1) पर वांछित विवरण नीले/ काले बॉल प्वाइंट पेन से ही भरना है। - उत्तर पत्र के पृष्ठ-2 पर विवरण लिखने/अंकित करने के लिए केवल नीले/ काले बॉल प्वाइंट पेन का प्रयोग करें। - 3. परीक्षा पुस्तिका/उत्तर पत्र पर निर्धारित स्थान के अलावा परीक्षार्थी अपना अनुक्रमांक अन्य कहीं नहीं लिखें। - प्रत्येक प्रश्न के लिये दिये गये चार विकल्पों में से केवल एक विकल्प सही है। - 5. प्रत्येक गलत उत्तर के लिए उस प्रश्न के लिए निर्धारित कुल अंकों में से एक चौथाई (¹/₄) अंक कुल योग में से काट लिए जाएँगे। यदि उत्तर पत्र में किसी प्रश्न का कोई उत्तर नहीं दिया गया है, तो कुल योग में से कोई अंक नहीं काटे जाएँगे। - 6. परीक्षा पुस्तिका एवं उत्तर पत्र का ध्यानपूर्वक प्रयोग करें क्योंकि किसी भी परिस्थिति में (केवल परीक्षा पुस्तिका एवं उत्तर पत्र के संकेत में भिन्नता की स्थिति को छोड़कर), दूसरी परीक्षा पुस्तिका उपलब्ध नहीं करायी जाएगी। - 7. उत्तर पत्र पर कोई भी रफ कार्य या लिखाई का काम करने की अनुमित नहीं है। सभी गणना एवं लिखाई का काम, परीक्षा पुस्तिका में निर्धारित जगह जो कि 'रफ कार्य के लिए जगह' द्वारा नामांकित है, पर ही किया जाएगा। यह जगह प्रत्येक पृष्ठ पर नीचे की ओर और पुस्तिका के अंत में एक पृष्ठ पर (पृष्ठ 39) दी गई है। - 8. परीक्षा सम्पन्न होने पर, परीक्षार्थी कक्ष/हॉल छोड़ने से पूर्व उत्तर पत्र कक्ष निरीक्षक को अवश्य सौंप दें। परीक्षार्थी अपने साथ इस परीक्षा पुस्तिका को ले जा सकते हैं। - 9. मांगे जाने पर प्रत्येक परीक्षार्थी निरीक्षक को अपना प्रवेश कार्ड दिखाएँ। - अधीक्षक या निरीक्षक की विशेष अनुमित के बिना कोई परीक्षार्थी अपना स्थान न छोडें। - 11. कार्यरत निरीक्षक को अपना उत्तर पत्र दिए बिना एवं उपस्थिति पत्र पर दुबारा हस्ताक्षर किए बिना कोई परीक्षार्थी परीक्षा हॉल नहीं छोड़ेंगे। यदि किसी परीक्षार्थी ने दूसरी बार उपस्थिति पत्र पर हस्ताक्षर नहीं किए तो यह माना जाएगा कि उसने उत्तर पत्र नहीं लौटाया है जिसे अनुचित साधन प्रयोग श्रेणी में माना जाएगा। परीक्षार्थी अपने बायें हाथ के अंगूठे का निशान उपस्थिति पत्र में दिए गए स्थान पर अवश्य लगाएँ। - 12. इलेक्ट्रॉनिक/हस्तचालित परिकलक एवं मोबाइल फोन, पेजर इत्यादि जैसे किसी इलेक्ट्रॉनिक उपकरण का प्रयोग वर्जित है। - 13. परीक्षा हॉल में आचरण के लिए परीक्षार्थी ज.ए.ब./बोर्ड के सभी नियमों एवं विनियमों द्वारा नियमित होंगे। अनुचित साधन प्रयोग के सभी मामलों का फैसला ज.ए.ब./बोर्ड के नियमों एवं विनियमों के अनुसार होगा। - 14. किसी भी स्थिति में परीक्षा पुस्तिका तथा उत्तर पत्र का कोई भी भाग अलग नहीं किया जाएगा। - 15. परीक्षार्थी द्वारा परीक्षा कक्ष/हॉल में प्रवेश कार्ड के अलावा किसी भी प्रकार की पाठ्य सामग्री, मुदित या हस्तिलिखित, कागज की पर्चियाँ, पेजर, मोबाइल फोन या किसी भी प्रकार के इलेक्ट्रॉनिक उपकरणों या किसी अन्य प्रकार की सामग्री को ले जाने या उपयोग करने की अनुमित नहीं है।