PC-2020 Subject : PHYSICS & CHEMISTRY

22095521

(Booklet Number)

Full Marks: 100

Duration: 2 Hours

INSTRUCTIONS

- This question paper contains all objective questions divided into three categories. Each
 question has four answer options given.
- Category-I: Carry 1 mark each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ¼ mark will be deducted.
- Category-II: Carry 2 marks each and only one option is correct. In case of incorrect answer
 or any combination of more than one answer, ½ mark will be deducted.
- 4. Category-III: Carry 2 marks each and also one or more option(s) is/are correct. If all correct answers are not marked and no incorrect answer is marked, then score = 2 × number of correct answers marked + actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will be considered wrong, but there is no negative marking for the same and zero mark will be awarded.
- Questions must be answered on OMR sheet by darkening the appropriate bubble marked A, B, C, or D.
- Use only Black/Blue ball point pen to mark the answer by complete filling up of the respective bubbles.
- Mark the answers only in the space provided. Do not make any stray mark on the OMR.
- Write question booklet number and your roll number carefully in the specified locations of the OMR. Also fill appropriate bubbles.
- Write your name (in block letter), name of the examination centre and put your full signature in appropriate boxes in the OMR.
- 10. The OMR is liable to become invalid if there is any mistake in filling the correct bubbles for question booklet number/roll number or if there is any discrepancy in the name/signature of the candidate, name of the examination centre. The OMR may also become invalid due to folding or putting stray marks on it or any damage to it. The consequence of such invalidation due to incorrect marking or careless handling by the candidate will be sole responsibility of candidate.
- 11. Candidates are not allowed to carry any written or printed material, calculator, pen, docu-pen, log table, wristwatch, any communication device like mobile phones etc. inside the examination hall. Any candidate found with such items will be reported against & his/her candidature will be summarily cancelled.
- Rough work must be done on the question paper itself. Additional blank pages are given in the question paper for rough work.
- Hand over the OMR to the invigilator before leaving the Examination Hall.
- 14. This paper contains questions in both English and Bengali. Necessary care and precaution were taken while framing the Bengali version. However, if any discrepancy(ies) is /are found between the two versions, the information provided in the English version will stand and will be treated as final.

PC-2020

A-96

https://www.pygonline.com

PHYSICS

Category-I (Q. 1 to 30)

Category-1: Carry 1 mark each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ¼ mark will be deducted. একটি উত্তর সঠিক। সঠিক উত্তর দিলে 1 নম্বর পাবে। ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে ¼ নম্বর কাটা যাবে।

1.	The bob of a sw speed v ₀ at its for	ringing seconds pendul west point. Its height fr	om this lowest point 2.	period is 2 s) has a small 25 s after passing through
	it is given by			
	$(A) = \frac{v_0^2}{2g}$	(B) $\frac{v_0^2}{g}$	$(C) = \frac{\mathbf{v}_0^2}{4\mathbf{g}}$	$(D) \frac{9v_0^2}{4g}$

একটি সেকেন্ড পেতৃলামের (যার দোলনকাল $2~\mathrm{s}$) পিন্ডটি তার সর্বনিমু অবস্থান, অতি অলপ দ্রুতি \mathbf{v}_0 সহ অতিক্রম করে। সেক্ষেত্রে সর্বনিমু অবস্থান অতিক্রম করার $2.25~\mathrm{s}$ পরে পিন্ডটির উচ্চতা কত হবে ?

- (A) $\frac{v_0^2}{2g}$ (B) $\frac{v_0^2}{g}$ (C) $\frac{v_0^2}{4g}$ (D) $\frac{9v_0^2}{4g}$
- 2. A steel and a brass wire, each of length 50 cm and cross-sectional area 0.005 cm² hang from a ceiling and are 15 cm apart. Lower ends of the wires are attached to a light horizontal bar. A suitable downward load is applied to the bar so that each of the wires extends in length by 0.1 cm. At what distance from the steel wire the load must be applied?

[Young's modulus of steel is 2×10^{12} dynes/cm² and that of brass is 1×10^{12} dynes/cm²]

(A) 7.5 cm (B) 5 cm (C) 10 cm (D) 3 cm প্রতিটি 50 cm লম্বা ও 0.005 cm² প্রস্থাচেছদ বিশিষ্ট একটি ষ্টীলের ও একটি পিতলের তার ছাদ থেকে 15 cm ব্যবধানে ঝোলানো আছে। তার দৃটির নীচের প্রস্তদ্বয় একটি অনুভূমিক দণ্ডের সঙ্গে যুক্ত। অনুভূমিক দণ্ডটির কোনো এক বিন্দৃতে একটি নিমুমুখী বল প্রয়োগ করা হল যার ফলে দৃটি তারেরই 0.1 cm করে দৈর্ঘ্য বৃদ্ধি হল। ষ্টীলের তারটি থেকে ঠিক কত দূরত্বে ওই বল প্রয়োগ করতে হবে ? [ষ্টীলের ইয়াং গুণান্ক 2 × 10¹² dynes/cm² এবং পিতলের ইয়াং গুণান্ক 1 × 10¹² dynes/cm²]

(A)	7.5 cm	(B)	5 cm	(C)	10 cm	(D) 3 cm
A			mayor grammatical districts to the second	3	ener ing phase phase as a second of second	P.T.O.

3. Which of the following diagrams correctly shows the relation between the terminal velocity V_T of a spherical body falling in a liquid and viscosity η of the liquid?

কোনো তরলে পতনরত একটি গোলাকার বস্তুর অন্তিম বৈগ $V_{_{\rm I}}$ এবং ওই তরলের সাম্দ্রতা η-এর সম্পর্ক, নীচের কোন্ লেখচিত্রটি দ্বারা বোঝায় ?

(B) v-

An ideal gas undergoes the cyclic process *abca* as shown in the given P-V diagram. It rejects 50 J of heat during *ab* and absorbs 80 J of heat during *ca*. During *bc*, there is no transfer of heat and 40 J of work is done by the gas. What should be the area of the closed curve *abca*?

- (A) 30 J
- (B) 40 J
- (C) 10 J
- (D) 90 J

P-V সূচক চিত্রে যেমন দেখানো হয়েছে, একটি আদর্শ গ্যাস abca আবর্ত প্রক্রিয়া সম্পন্ন করে। গ্যাসটি ab প্রক্রিয়ায় 50 J তাপ বর্জন করে এবং ca প্রক্রিয়ায় 80 J তাপ গ্রহণ করে। bc প্রক্রিয়ায় কোনো তাপ গ্রহণ বা বর্জন হয় না কিন্তু গ্যাসটি 40 J কার্য্য সম্পন্ন করে। সেক্ষেত্রে abca লেখটি দ্বারা আবদ্ধ ক্ষেত্রের ক্ষেত্রেফল কত ?

- (A) 30 J
- (B) 40.
- (C) 10 J
- (D) 90 J

A container AB in the shape of a rectangular parallelopiped of length 5 m is divided internally by a movable partition P as shown in the figure. The left compartment is filled with a given mass of an ideal gas of molar mass 32 while the right compartment is filled with an equal mass of another ideal gas of molar mass 18 at same temperature. What will be the distance of P from the left wall A when equilibrium is established?

- (A) 2.5 m
- (B) 1.8 m
- (C) = 3.2 m
- (D) 2.1 m

চিত্রে যেমন দেখানো হয়েছে, 5 m লম্বা একটি আয়তাকার বদ্ধ আধার AB-এর ভিতরে একটি চলমান দেয়াল P দিয়ে ভাগ করা আছে। বাঁ দিকের অংশটি 32 আণবিক ভরের একটি আদর্শ গ্যাস দ্বারা পূর্ণ আছে এবং ডান দিকের অংশটি একই তাপমাত্রায় 18 আণবিক ভরের অন্য একটি আদর্শ গ্যাস দ্বারা পূর্ণ আছে। দৃটি গ্যাসের সমান ভর। সেক্ষেত্রে সাম্যাবস্থায় পৌছানোর পরে P দেয়ালটি বাঁ দিকের দেয়াল 🛆 থেকে কত দূর্ত্বে থাকবে ?

- (A) 2.5 m
- (B) 1.8 m
- (C) 3.2 m
- (D) 2.1 m
- When 100 g of boiling water at 100 °C is added into a calorimeter containing 300 g of 6. cold water at 10 °C, temperature of the mixture becomes 20 °C. Then a metallic block of mass 1 kg at 10 °C is dipped into the mixture in the calorimeter. After reaching thermal equilibrium, the final temperature becomes 19 °C. What is the specific heat of the metal in C.G.S. unit?
 - (A) 0.01
- (B) = 0.3
- (C) = 0.09
- (D) = 0.1

100 °C-এ 100 g ফুটস্ত জল 10 °C-এ 300 g জল সহ একটি ক্যালোরিমিটারে ঢালা হল যার ফলে মিশ্র্রের তাপমাত্রা হল 20 °C । তারপর 10 °C-এ রাখা 1 kg ভরের একটি ধাতব খন্ড ওই মিশ্র্রে ডোবানো হল। তাপীয় সাম্যাবস্থায় পৌছলে সংস্থাটির অন্তিম উষ্ণতা হল 19 °C। সেক্ষেত্রে C.G.S. এককে ধাতৃটির আপেক্ষিক তাপ কত ?

- (A) = 0.01
- 0.3 (B)
- 0.09 (C)
- (D) = 0.1

A

5

P.T.O.

As shown in the figure, a point charge $q_1 = +1 \times 10^{-6}$ C is placed at the origin in x-y plane and another point charge $q_2 = +3 \times 10^{-6}$ C is placed at the co-ordinate (10, 0). In that case, which of the following graph(s) shows most correctly the electric field vector in E, in x-direction?

প্রদর্শিত চিত্রের মতো, একটি বিন্দু আধান $q_1=\pm 1\times 10^{-6}~C$ -কে x-y তলে মূল বিন্দুতে রাখা হল এবং আর একটি বিন্দু আধান ${
m q}_2$ = +3 imes 10 $^{-6}$ C-কে (10, 0) স্থানাঙ্কে রাখা হল। সেক্ষেত্রে নীচের কোন্ (কোন্) লেখচিত্রটি x-অভিমুখে তড়িৎ ক্ষেত্র E_{γ} -এর মান সব্থেকে সঠিক ভাবে নির্দেশ করে ?

8. Four identical point masses, each of mass m and carrying charge +q are placed at the corners of a square of sides 'a' on a frictionless plain surface. If the particles are released simultaneously, the kinetic energy of the system when they are infinitely far apart is

- (A) $\frac{q^2}{3}(2\sqrt{2}+1)$ (B) $\frac{q^2}{3}(\sqrt{2}+2)$ (C) $\frac{q^2}{3}(\sqrt{2}+4)$ (D) $\frac{q^2}{3}(\sqrt{2}+1)$

m ভর ও +q আধান সম্পন্ন চারটি সদৃশ বস্তু কণাকে একটি ঘর্ষণহীন সমতলের উপর 'a' দৈর্ঘ্য বিশিষ্ট একটি বর্গের চার কোণায় রাখা হল। কণাগুলিকে যদি এক সঙ্গে ছেড়ে দেওয়া হয় তবে তারা পরস্পর থেকে অসীম দূরতে সরে যাওয়ার পর সংস্থাটির মোট গতিশক্তি কত হবে ?

- (A) $\frac{q^2}{a}(2\sqrt{2}+1)$ (B) $\frac{q^2}{a}(\sqrt{2}+2)$ (C) $\frac{q^2}{a}(\sqrt{2}+4)$ (D) $\frac{q^2}{a}(\sqrt{2}+1)$

A very long charged solid cylinder of radius 'a' contains a uniform charge density ρ. 9. Dielectric constant of the material of the cylinder is k. What will be the magnitude of electric field at a radial distance 'x' $(x \le a)$ from the axis of the cylinder?

(A)
$$\rho \frac{x}{\epsilon_0}$$

(B)
$$\rho \frac{x}{2k\epsilon_0}$$

(A)
$$\rho \frac{x}{\varepsilon_0}$$
 (B) $\rho \frac{x}{2k\varepsilon_0}$ (C) $\rho \frac{x^2}{2a\varepsilon_0}$ (D) $\rho \frac{x}{2k}$

(D)
$$\rho \frac{x}{2k}$$

একটি 'a' ব্যাসার্ধের খুব লম্বা আহিত নিরেট চোঙ-এর আধান ঘনত হল ho । চোঙটির উপাদানের পরাবৈদ্যুতিক ধ্রুবক k। তাহলে চোঙটির ব্যাসার্ধ বরাবর $x \cdot (x < a)$ দূরত্বে তড়িৎক্ষেত্রের মান কত ?

(A)
$$\rho \frac{x}{\epsilon_0}$$

(B)
$$\rho \frac{x}{2k\varepsilon_0}$$

(A)
$$\rho \frac{x}{\epsilon_0}$$
 (B) $\rho \frac{x}{2k\epsilon_0}$ (C) $\rho \frac{x^2}{2a\epsilon_0}$ (D) $\rho \frac{x}{2k}$

(D)
$$\rho \frac{x}{2k}$$

A galvanometer can be converted to a voltmeter of full-scale deflection V₀ by connecting 10. a series resistance R₁ and can be converted to an ammeter of full-scale deflection l₀ by connecting a shunt resistance R2. What is the current flowing through the galvanometer at its full-scale deflection?

(A)
$$\frac{V_0 - I_0 R_2}{R_1 - R_2}$$

(B)
$$\frac{V_0 + I_0 R_1}{R_1 + R_2}$$

(C)
$$\frac{V_0 - I_0 R}{R_2 - R_1}$$

$$(A) \quad \frac{V_0 - I_0 R_2}{R_1 - R_2} \qquad (B) \quad \frac{V_0 + I_0 R_2}{R_1 + R_2} \qquad (C) \quad \frac{V_0 - I_0 R_1}{R_2 - R_1} \qquad (D) \quad \frac{V_0 + I_0 R_1}{R_1 + R_2}$$

একটি গ্যালভানোমিটারকে ${f V}_0$ সর্বোচ্চ বিক্ষেপের একটি ভোল্টমিটারে পরিণত করতে হলে ${f R}_1$ রোধ শ্রেণী সমবায়ে যুক্ত করতে হয় এবং \mathbf{I}_0 সর্বোচ্চ বিক্ষেপের একটি অ্যাম্মিটারে পরিণত করতে হলে \mathbf{R}_2 রোধ সমান্তরাল সমবায়ে যুক্ত করতে হয়। সেক্ষেত্রে গ্যালভানোমিটারটির সর্বোচ্চ বিক্ষেপে তার মধ্য দিয়ে প্রবাহ মাত্রা কত হয় ?

(A)
$$\frac{V_0 - I_0 R_1}{R_1 - R_2}$$

(B)
$$\frac{V_0 + I_0 R_2}{R_1 + R_2}$$

(C)
$$\frac{V_0 - I_0 R}{R_2 - R_1}$$

$$(A) \quad \frac{V_0 - I_0 R_2}{R_1 - R_2} \qquad (B) \quad \frac{V_0 + I_0 R_2}{R_1 + R_2} \qquad (C) \quad \frac{V_0 - I_0 R_1}{R_2 - R_1} \qquad (D) \quad \frac{V_0 + I_0 R_1}{R_1 + R_2}$$

https://www.pygonline.com

As shown in the figure, a single conducting wire is bent to form a loop in the form of a circle of radius 'r' concentrically inside a square of side 'a'. where a: r = 8: π . A battery B drives a current through the wire. If the battery B and the gap G are of negligible sizes, determine the strength of magnetic field at the common centre O.

(A) $\frac{\mu_0 I}{2\pi a} \sqrt{2} (\sqrt{2} - I)$

(B)
$$\frac{\mu_0 I}{2\pi a} (\sqrt{2} + 1)$$

(C) $\frac{\mu_0 l}{\pi a} 2\sqrt{2} (\sqrt{2} + 1)$

(D)
$$\frac{\mu_0 I}{\pi a} 2\sqrt{2} (\sqrt{2} - 1)$$

একটি পরিবাহী তারকে প্রদর্শিত চিত্রের মতো বাঁকিয়ে ·a` দৈর্ঘ্যের একটি বর্গ ও তার ভিতরে ·r` ব্যাসার্ধের একটি সমকেন্দ্রিক বৃত্তের আকার দেওয়া হল যাতে $a:r=8:\pi$ হয়। শ্রেণী সমবায়ে যুক্ত একটি কোশ B লুপটিতে তড়িৎ প্রবাহ সৃষ্টি করল। B কোশ ও G ফাঁকটির আকার যদি নগন্য হয় তবে লুপটির সাধারণ কেন্দ্র ০-তে চুম্বক ক্ষেত্রের মান কত ?

(A)
$$\frac{\mu_0 I}{2\pi a} \sqrt{2} (\sqrt{2} - 1)$$

(B)
$$-\frac{\mu_0 I}{2\pi a}(\sqrt{2}+1)$$

(C)
$$\frac{\mu_0 I}{\pi a} 2\sqrt{2} (\sqrt{2} + 1)$$

(D)
$$\frac{\mu_0 I}{\pi a} 2\sqrt{2} (\sqrt{2} - 1)$$

12.

As shown in the figure, a wire is bent to form a D-shaped closed loop, carrying current I. where the curved part is a semi-circle of radius R. The loop is placed in a uniform magnetic field B, which is directed into the plane of the paper. The magnetic force felt by the closed loop is

- (A) = 0
- (B) IRB
- (C) 2JRB
- (D) $\frac{1}{2}$ IRB

প্রদর্শিত চিত্রের মতো একটি পরিবাহী তারকে R ব্যাসার্ধের অর্ধবৃত্তের মতো বাঁকিয়ে একটি D আকৃতির বদ্ধ বর্তনী গঠন করা হয়েছে যার মধ্যে প্রবাহ মাত্রা হল !। বর্তনীটিকে একটি সুষম চৌম্বকক্ষেত্র B-তে স্থাপন করা হল। চৌম্বকক্ষেত্রটি পৃষ্ঠার ভিতর দিকে লম্ব ভাবে ক্রিয়াশীল। সেক্ষেত্রে সমগ্র বর্তনীর উপর প্রযুক্ত বলের মান কত?

- (A) 0

- (B) IRB (C) 2IRB (D) $\frac{1}{2}$ IRB

What will be the equivalent resistance between the terminals A and B of the infinite resistive network shown in the figure?

$$(A) \quad \frac{(\sqrt{3}+1)E}{2}$$

(B)
$$\frac{(\sqrt{3}-1)R}{2}$$
 (C) $3\frac{R}{2}$

(C)
$$3\frac{R}{2}$$

(D)
$$(\sqrt{3}+1)R$$

চিত্রে প্রদর্শিত রোধের অসীম বর্তনীটির 🛆 এবং B প্রান্তে তুল্য রোধ কত ?

$$(A) \quad \frac{(\sqrt{3}+1)R}{2}$$

(A)
$$\frac{(\sqrt{3}+1)R}{2}$$
 (B) $\frac{(\sqrt{3}-1)R}{2}$ (C) $3\frac{R}{2}$

(C)
$$-3 \frac{R}{2}$$

(D)
$$(\sqrt{3}+1)R$$

14.

When a DC voltage is applied at the two ends of a circuit kept in a closed box, it is observed that the current gradually increases from zero to a certain value and then remains constant. What do you think that the circuit contains?

(A) A resistor alone

- A capacitor alone
- A resistor and an inductor in series
- A resistor and a capacitor in series (D)

একটি বন্ধ বাক্সের মধ্যে রাখা একটি বর্তনীর দুই প্রান্তে DC ভোল্টেজ দিলে দেখা গেল যে প্রবাহ মাত্রা প্রথমে শূন্য থেকে ধীরে ধীরে বাড়তে থাকে একসময় স্থির মাত্রায় পৌছয়। বর্তনীটিতে কী আছে বলে মনে কর ?

- (A) তথুমাত্র একটি রোধ
- শুধুমাত্র একটি ধারক (B)
- (C) শ্রেণী সমবায়ে যুক্ত একটি রোধ ও একটি আবেশক
- (D) শ্রেণী সমবায়ে যুক্ত একটি রোধ ও একটি ধারক

Consider the circuit shown. If all the cells have negligible internal resistance, what will be the current through the 2 Ω resistor when steady state is reached?

- (A) 0.66 A
- (B) 0.29 A
- (C) 0 A
- (D) 0.14 A

চিত্রে প্রদর্শিত বর্তনীটি বিবেচনা কর। সমস্ত কোশগুলির অভ্যন্তরীণ রোধ উপেক্ষণীয় হলে অন্তিম সাম্যাবস্থায় পৌছানোর পর 2 Ω রোধের মধ্য দিয়ে প্রবাহ মাত্রা কত হবে ?

- (A) 0.66 A
- (B) 0.29 A
- (D) 0.14 A

16. Consider a conducting wire of length L bent in the form of a circle of radius R and another conductor of length 'a' (a << R) is bent in the form of a square. The two loops are then placed in same plane such that the square loop is exactly at the centre of the circular loop. What will be the mutual inductance between the two loops?

- (A) $\mu_0 \frac{\pi a^2}{L}$ (B) $\mu_0 \frac{\pi a^2}{16L}$ (C) $\mu_0 \frac{\pi a^2}{4L}$ (D) $\mu_0 \frac{a^2}{4\pi L}$

ে দৈর্ঘ্যের একটি পরিবাহী তারকে বাঁকিয়ে R ব্যাসার্ধের একটি বৃত্তের আকার দেওয়া হল এবং 'a' (a<<IL) দৈর্ঘ্যের আর একটি পরিবাহী তারকে বাঁকিয়ে একটি বর্গের আকার দেওয়া হল। তারপর ওই দৃটি লুপকে একই সমতলে এমন ভাবে রাখা হল যে বর্গাকৃতি লুপটি বৃত্তাকার লুপের ঠিক কেন্দ্রে থাকে। সেক্ষেত্রে লুপ দৃটির মধ্যে পারস্পরিক আবেশের মান কত ?

- (A) $\mu_0 \frac{\pi a^2}{L}$ (B) $\mu_0 \frac{\pi a^2}{16L}$ (C) $\mu_0 \frac{\pi a^2}{4L}$ (D) $\mu_0 \frac{a^2}{4\pi L}$

17. An object is placed 60 cm in front of a convex mirror of focal length 30 cm. A plane mirror is now placed facing the object in between the object and the convex mirror such that it covers lower half of the convex mirror. What should be the distance of the plane mirror from the object so that there will be no parallax between the images formed by the two mirrors?

(A) 40 cm (B) 30 cm (C) 20 cm (D) 15 cm একটি ব্যুকে 30 cm ফোকাস দুরত্বের একটি উত্তল দর্পণের সামনে 60 cm দুরে রাখা হল। এরপর একটি সমতল দর্পণকে তাদের মাঝে এমন ভাবে রাখা হল যে উত্তল দর্পণের নীচের অর্ধাংশ ঢাকা পড়ে যায়। সমতল দর্পণটিকে ব্যুটির থেকে ঠিক কত দূরত্বে রাখলে দূটি দর্পণে সৃষ্ট প্রতিবিশ্বদয়ের মধ্যে কোনো লম্বন ত্ৰটি থাকবে না ?

- (A) 40 cm
- (B) 30 cm
- (D) 15 cm

		PC-2	020							
18.	poured in the vessel upof the image. Assume (A) 21.33 cm above	80 cm. The image of a he lens. If now water is proximate new position we the lens the lens								
	(C) 33.07 cm এতি বিধান পাত্রের ঠিক উপরে (মৃখের কাছে) একটি পাতলা অভিসারী লেন্স রাখা হল 80 cm গভীরতার একটি খালি পাত্রের ঠিক উপরে (মৃখের কাছে) একটি পাতলা অভিসারী লেন্স রাখা হল যাতে পাত্রের তলায় রাখা একটি পয়সার প্রতিবিশ্ব লেন্স-এর 20 cm উপরে তৈরী হল। এবার পাত্রটির মধ্যে 64 cm উচ্চতার জল ঢেলে দেওয়া হলে প্রতিবিশ্বের নতুন অবস্থান কোথায় হবে ? ধরে নাও জলের									
	প্রতিসরান্ধ 4/3 I	এর উপরে	(B) 6.67 cm (F)	দ-এর নীচে						
	(A) 21.33 cm (四年)	এর উপরে	(D) 24 cm লেম্স-							
	(C) 33.67 cm লেম্স-									
19.	the approximate ratio	emerging from one ones the intensity of it of intensity of an in	of the slits in a Young' ght emerging from the sterference maximum t	s double slit experiment other slit. What will be o that of an interference						
	minimum ? (A) 2.25	(B) 98	(C) 5	(D) 9.9						
	ইয়ং-এর দ্বি-ছিদ্র পরীক্ষ আলোর তীব্রতার 1.5 গুণ (A) 2.25	11 সেক্ষেত্রে সবোচ্চ ও স (B) 98	বানমু ব্যাতচারের আলোর ১ (C) 5	(D) 9.9						
20.	In a Frounhofer diffr			5 mm is illuminated by a pattern is observed on a ear separation of the first						
	(A) 1.0 mm	(B) 1.1 mm	(C) 0.6 mm	(D) 1.2 mm						
	ফ্রাউন্হোফার-এর অপব আলো দ্বারা প্রভাসিত কর্ দুটি প্রথম কৃষ্ণপটির মণে	রা হল এবং 50 cm দূরে	বেধ-এর একটি ছিদ্রকে 60 একটি পর্দার উপর অপবর্ত	0 nm তরঙ্গ দৈর্ঘ্যের একবর্ণী ন সজ্জা তৈরী হল। সেক্ষেত্রে						
	(A) 1.0 mm	(B) 1.1 mm	(C) 0.6 mm	(D) 1.2 mm						
21.	If R is the Rydberg wave-length in the ra	ange of		not emit any radiation of						
	.,			(D) $\frac{9}{R}$ to $\frac{144}{7R}$ cm						
	বিকিরণ নিঃসরণ করে ন	া তা হল		অংশের তরঙ্গ দৈর্ঘ্যের কোনো						
	(A) $\frac{1}{R}$ to $\frac{4}{3R}$ cm	(B) $\frac{7}{5R}$ to $\frac{19}{5R}$ cr	m (C) $\frac{4}{R}$ to $\frac{36}{5R}$ cr	n (D) $\frac{9}{R}$ to $\frac{144}{7R}$ cm						
Ā	graphic distance promote process of the second control of the seco	gantaria ngana sama na 16 gipina panaharan at mangang gana ni manahar natah i	11	P.T.0						

22.	A nucleus X em	nits a beta particle to	produce a nucleus Y. If the	eir atomic masses are M _x
	and M _y respective	vely, the maximum en	nergy of the beta particle em	itted is
	(where m _e is the	mass of an electron a	and c is the velocity of light)
	$(A) (M_x - M_y - M_y$	– m _e) c ²	(B) $(M_x - M_y +$	m_e) e^2
	$(C) (M_{x} - M_{y})$	c^2	(D) $(M_x - M_y -$	2m _e) c ²
	নিউক্লিয়াস X এক যথাক্রেমে M_χ ও M_χ আলোর বেগ c)	টি বিটা কণা নিঃসরণ ক 1 _, হয় তবে নিঃসৃত বিটা	দরে নিউক্লিয়াস Y সৃষ্টি করে। দ া কণার সর্বোচ্চ শক্তি হবে (ধরে	তাদের পারমাণবিক ভর যদি নাও, ইলেক্ট্রনের ভর m় ও
	$(A) (M_x - M_y -$	- m _e) c ²	(B) $(M_x - M_y +$	m_e) c^2
	$(C) = (M_x - M_y)$	e^2	$(D) (M_x - M_y - 1)$	2m _e) c ²
23.	For nuclei with a	mass number close to	o 119 and 238, the binding of	enerojes per nucleon aro
	approximately 7 breaks into two	.6 MeV and 8.6 Me	eV respectively. If a nuclei al masses, what will be the	is of mass number 238
	(A) 214 MeV	(B) 119 MeV	V (C) 2047 MeV	(D) 1142 MeV
	7.6 MeV 3 8.6	MeV । যদি 238 ভরস	ক্লিয়াসগুলির ক্ষেত্রে নিউক্লিয়ন প্র ংখ্যার একটি নিউক্লিয়াস প্রায় স উদ্ভূত শক্তির পরিমাণ প্রায় কত १	
	(A) 214 MeV	(B) 119 MeV	(C) 2047 MeV	(D) 1142 MeV
24.	a small a.c. signs	al of 15 mV is adde and the alternating co	r is connected with a load red to the base emitter voltage of the base emitter voltage. V	ge, the alternating base
	(A) 90	(B) 640	(C) 900	(D) 720
	একটি সাধারন নিঃসা	রক বিবর্ধক-এ 6 kΩ τ	লাড রোধ যুক্ত আছে। যখন ভূ	মি-নিঃসারক বিভবের উপর
	15 mV মানের এক	ট ক্ষুদ্র পরিবর্তী সংকেত	্যোগ করা হয় তখন পরিবর্তী ভূ কটির ভোল্টেজ লাভ (gain) কর	মি প্রবাহ হয় 20 μA এবং
	(A) 90	(B) 640	(C) 900	(D) 720
			12	

In the circuit shown, the value of β of the transistor is 48. If the base current supplied is 200 μ A, what is the voltage at the terminal Y?

(A) -0.2 V

(B) 0.5 V

(C) 4 V

(D) 4.8 V

চিত্রে প্রদর্শিত বর্তনীতে ট্রান্জিষ্টারটির β-এর মান 48 । ট্রান্জিষ্টারটির ভূমি-প্রবাহের মান যদি 200 μA হয় তবে Y প্রান্তে বিভব কত হবে ?

(A) 0.2 V

(B) 0.5 V

(C) 4 V

(D) 4.8 V

The frequency v of the radiation emitted by an atom when an electron jumps from one orbit to another is given by $v = k \delta E$, where k is a constant and δE is the change in energy level due to the transition. Then dimension of k is

- (A) $ML^2\Gamma^2$
- (B) the same dimension of angular momentum
- ML^2T^{-1} (C)
- (D) $M^{-1}L^{-2}T$

কোনো পরমাণুর মধ্যে একটি ইলেক্ট্রন যখন এক কক্ষ থেকে অন্য কক্ষে সংক্রমিত হয় তখন নিঃসৃত বিকিরণের কম্পান্ক যে সমীকরণ মেনে চলে তা হল $v=k \; \delta E,$ যেখানে k একটি ধ্রুবক এবং δE হল ওই দৃই কক্ষের শক্তির মানের পার্থক্য। তাহলে k-এর মাত্রা হবে

(A) ML²T⁻²

(৪) কৌণিক ভরবেগের মাত্রার সমান

(C) ML²T⁻¹

(D) M-1L-2T

Consider the vectors $\vec{A} = \hat{i} + \hat{j} - \hat{k}$, $\vec{B} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{C} = \frac{1}{\sqrt{5}}(\hat{i} - 2\hat{j} + 2\hat{k})$. What is the 27.

value of \vec{C} . $(\vec{A} \times \vec{B})$?

(A) = 1

(B) = 0

(C) $3\sqrt{2}$ (D) $18\sqrt{5}$

 $\vec{A} = \hat{i} + \hat{j} - \hat{k}$, $\vec{B} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{C} = \frac{1}{\sqrt{5}}(\hat{i} - 2\hat{j} + 2\hat{k})$. ভেক্টরগুলি বিবেচনা কর । সেক্ষেত্রে

 $\vec{C}.(\vec{A} \times \vec{B})$ -এর মান কত ?

A

P.T.O.

28.	A fighter plane, flying horizontally with a speed 360 kmph at an altitude of 500 m drops a
	bomb for a target straight ahead of it on the ground. The bomb should be dropped at what
	approximate distance ahead of the target? Assume that acceleration due to gravity (g) is
	10 ms ⁻² . Also neglect air drag.

(A) 1000 m

(B) $50\sqrt{5}$ m (C) $500\sqrt{5}$ m

(D) 866 m

একটি যুদ্ধবিমান 360 kmph দ্রুতিতে 500 m উচ্চতায় অনুভূমিক পথে চলতে চলতে সোজা সামনের দিকে ভূমিতে অবস্থিত একটি লক্ষ্যের উদ্দেশ্যে বোমা ফেললো। বোমাটি কত দূরত্ব আগেই ফেলতে হবে ? অভিকর্ষজ তুরণ g-এর মান ধরে নাও 10 ms⁻² এবং বায়ুর ঘর্ষণ উপেক্ষা কর।

(A) 1000 m

(B) $50\sqrt{5}$ m (C) $500\sqrt{5}$ m

(D) 866 m

29. A block of mass m rests on a horizontal table with a co-efficient of static friction µ. What minimum force must be applied on the block to drag it on the table?

(A) $\frac{\mu}{\sqrt{1+\mu^2}}$ mg (B) $\frac{\mu-1}{\mu+1}$ mg (C) $\frac{\mu}{\sqrt{1-\mu^2}}$ mg (D) μ mg

একটি অনুভূমিক টেবিলের উপরে m ভরের একটি বস্তু রাখা আছে। টেবিল ও বস্তুটির মধ্যে স্থির-ঘর্ষণ গুণাঙ্ক μ । ব্যুটিকে টেবিলের উপরে টেনে সরাতে হলে কমপক্ষে কত বল প্রয়োগ করতে হবে ?

(A) $\frac{\mu}{\sqrt{1+\mu^2}} mg$ (B) $\frac{\mu-1}{\mu+1} mg$ (C) $\frac{\mu}{\sqrt{1-\mu^2}} mg$ (D) μmg

30. A tennis ball hits the floor with a speed v at an angle θ with the normal to the floor. If the collision is inelastic and the co-efficient of restitution is ϵ , what will be the angle of reflection?

(A) $\tan^{-1}\left(\frac{\tan\theta}{\varepsilon}\right)$ (B) $\sin^{-1}\left(\frac{\sin\theta}{\varepsilon}\right)$ (C) $\theta\varepsilon$ (D) $\theta\frac{2\varepsilon}{\varepsilon+1}$

একটি টেনিস বল v বেগে মেঝের উপর উল্লম্ব রেখার সঙ্গে heta আপতন কোণে আঘাত করল। ধরে নাও মেঝে ও বলের মধ্যে সংঘর্ষটি অস্থিতিস্থাপক এবং স্থিতিস্থাপক গুণাঙ্ক হল 🕫। সেক্ষেত্রে বলটির প্রতিফলন কোণ কত হবে ?

(A) $\tan^{-1}\left(\frac{\tan\theta}{\varepsilon}\right)$ (B) $\sin^{-1}\left(\frac{\sin\theta}{\varepsilon}\right)$ (C) $\theta\varepsilon$ (D) $\theta\frac{2\varepsilon}{\varepsilon+1}$

Category-II (Q. 31 to 35)

Carry 2 marks each and only one option is correct. In case of incorrect answer or combination of more than one answer, ½ mark will be deducted. একটি উত্তর সঠিক। সঠিক উত্তর দিলে 2 নম্বর পাবে। ভূল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে ½ নম্বর কাটা যাবে।

- A metallic block of mass 20 kg is dragged with a uniform velocity of 0.5 ms⁻¹ on a 31. horizontal table for 2.1 s. The co-efficient of static friction between the block and the table is 0.10. What will be the maximum possible rise in temperature of the metal block if the specific heat of the block is 0.1 C.G.S. unit? Assume $g = 10 \text{ ms}^{-2}$ and uniform risc in temperature throughout the whole block. [Ignore absorption of heat by the table]
 - (D) 0.05 °C (C) 0.001 °C (B) 0.025 °C (A) 0.0025 °C $20~{
 m kg}$ ভ্রের একটি ধাতব ব্যুকে $0.5~{
 m ms}^{-1}$ বেগে একটি অনুভূমিক টেবিলের উপর $2.1~{
 m s}$ ধরে টানা হল। ওই ক্ষুটি এবং টেবিলের মধ্যে স্থির ঘর্ষণ গুণাঙ্ক হল 0.10 । ক্ষুটির উপাদানের আপেক্ষিক তাপ $0.1\,\mathrm{C.G.S.}$ একক হলে বস্তুটির তাপমাত্রা সর্বাধিক কড বৃদ্ধি পেতে পারে ? মনে কর $\mathrm{g}=10~\mathrm{ms}^{-2}$ এবং ক্যুটির সর্বাংশে সুষম ভাবে তাপমাত্রা বৃদ্ধি হয় । (টেবিল দারা তাপীয় শোষণ উপেক্ষা কর)
 - (A) 0.0025 °C
- (B) 0.025 °C
- (C) 0.001 °C
- (D) 0.05 °C
- Consider an engine that absorbs 130 cal of heat from a hot reservoir and delivers 30 cal 32. heat to a cold reservoir in each cycle. The engine also consumes 2 J energy in each cycle to overcome friction. If the engine works at 90 cycles per minute, what will be the maximum power delivered to the load?

[Assume the thermal equivalent of heat is 4.2 J/cal]

- (A) 816 W
- (B) 819 W
- (C) 627 W
- (D) 630 W

মনে কর একটি ইঞ্জিন প্রতি চক্রেন উষ্ণ আধার থেকে 130 cal তাপ গ্রহণ করে ও শীতল আধারে 30 cal তাপ বর্জন করে। এছাড়া ইঞ্জিনটি ঘর্ষণ অতিক্রম করার জন্য প্রতি চক্রে 2 J শক্তি ব্যবহার করে। ইঞ্জিনটি যদি প্রতি মিনিটে 90 চক্র অতিক্রম করে তবে লোড-এ সর্বোচ্চ কত ক্ষমতা প্রদান করতে পারবে ? [ধরে নাও, তাপের যান্ত্রিক তুলাঙ্ক হল 4.2 J/cal]

- (A) 816 W
- (B) 819 W
- (C) 627 W
- (D) 630 W

33.	Two pith balls, that when each angle between t	charge is tri	g charge + pled, angle	q are hung f e between th	from a h	ook by two s s double. Wh	trings. It is at was th	is found e initial
	(A) 30°	(B)	60°	(C)	45°	, (I) 90°	
	প্রতিটি +q আধান আছে। যদি প্রতিগি সুতো দৃটির মধ্যে :	ট শোলার বলের	া আধান তি	ালাদা আলাদা ন গুণ করা হয়	সূতোর স য় তবে সূ	াহায্যে একটি য তো দুটির মধ্যে	হক থেকে র কোণ দি	ঝোলানো গুণ হয়।
	(A) 30°	(B)	60°	(C)	45°	1)) 90°	
34.	A conducting c placed perpendi $B = 2 \sin (50 \pi t)$ t = 0.	icular to a spa	tially unit	form magnet	ic field	B, which vari	ies with ti	me t as
	(A) 0.5 C	(B)	0.2 C	(C)	0 C	(E	0.14 (3
	20 Ω রোধ ও 20 B-এর উল্লম্ব তলে পরিবর্তিত হয়। ত আধান প্রবাহিত হ	ব্যাখাহল। গুহলৈ t=0 সম	টীম্বকক্ষেত্রটি য় থেকে শুকু	ট সময় t-এর ফ করে 20 m	সঙ্গে B= s সময়ের ·	2sin(50πt) T	সমীকরণ	অনুযায়ী
	(A) 0.5 C	(B)	0.2 C	(C)	0 C	(D	0.14 (-
35.	A pair of parall +V and the oth between the plat the angle of the	er is at grountes with a velo	nd potenti ocity v _o an	al. A narrov id in a directi	v beam ion paral	of electrons liel to the plat	enters the	e space
	(A) $\tan^{-1}\left(\frac{eV}{md}\right)$				$\tan^{-1}\left(\frac{1}{1}\right)$	`		
	(C) $\sin^{-1}\left(\frac{eV}{mdv}\right)$	$\left(\frac{L}{v_0}\right)$. (D)	cos-t	$\frac{\text{eVL}}{\text{mdv}_0^2}$		
	দৃটি সমান্তরাল ধাত বিভবের সঙ্গে যুক্ত দুটির মধ্যবর্তী স্থানে পাত দৃটির সঙ্গে কং	আছে। অতঃপ i v _o বেগে প্রবে	র পাত দৃটি ণ করলো।	র সঙ্গে সমান্তর	াল পথে	ইলেষ্ট্রনের একা	ট সৃক্ষ্ম স্রো	ত, পাত
	,	`	(A 1		(\		
	(A) $\tan^{-1}\left(\frac{eV}{mdv}\right)$	$\left(\frac{L}{c_0}\right)$		(B)	$\tan^{-1}\left(\frac{1}{1}\right)$	$\frac{\text{eVL}}{\text{ndv}_0^2}$		
	(C) $\sin^{-1}\left(\frac{eVI}{mdv}\right)$	<u>L</u> / ₀)		(D)	$\cos^{-1}\left(\frac{1}{t}\right)$	$\frac{\text{eVL}}{\text{ndv}_0^2}$		

Category-III (Q. 36 to 40)

Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and also no incorrect answer is marked, then score = 2 × number of correct answers marked ÷ actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will be considered wrong, but there is no negative marking for the same and zero mark will be awarded.

এক বা একাধিক উত্তর সঠিক। সব কটি সঠিক উত্তর দিলে 2 নম্বর পাবে। যদি কোন ভুল উত্তর না পাকে

এক বা একাধিক উত্তর সঠিক। সব কটি সঠিক উত্তর দিলে 2 নম্বর পাবে। যদি কোন ভুল উত্তর না পাকে এবং সঠিক উত্তরও সব কটি না থাকে তাহলে পাবে 2 × যে কটি সঠিক উত্তর দেওয়া হয়েছে তার সংখ্যা ÷ আসলে যে কটি উত্তর সঠিক তার সংখ্যা। যদি কোনো ভুল উত্তর দেওয়া হয় বা একাধিক উত্তরের মধ্যে একটিও ভুল পাকে তাহলে উত্তরটি ভুল ধরে নেওয়া হবে। কিছু সেক্ষেত্রে কোনো নম্বর কাটা যাবে না, অর্থাৎ শুন্য নম্বর পাবে।

A simple pendulum of length ℓ is displaced so that its taught string is horizo released. A uniform bar pivoted at one end is simultaneously released from it position. If their motions are synchronous, what is the length of the bar?	ntal and then ts horizontal
position. If their motions are synchronous, with the	21

(A) $\frac{3\ell}{2}$ (B) ℓ (C) 2ℓ (D) $\frac{2\ell}{3}$

ে দৈর্ঘ্যের একটি সরল দোলকের পিশুটিকে অনুভূমিক রেখায় টান করে ধরে ছেড়ে দেওয়া হল। আবার একই সঙ্গে এক প্রান্তে রিভেট দিয়ে যুক্ত একটি সৃষম দশুকে অনুভূমিক রেখায় ধরে ছেড়ে দেওয়া হল। দুটির গতি যদি সমলয় হয় তবে দশুটির দৈর্ঘ্য কত ?

(A) $\frac{3\ell}{2}$ (B) ℓ (C) 2ℓ (D) $\frac{2\ell}{3}$

37. A 400 Ω resistor, a 250 mH inductor and a 2.5 μF capacitor are connected in series with an AC source of peak voltage 5 V and angular frequency 2kHz. What is the peak value of the electrostatic energy of the capacitor?

(A) 2 μJ (B) 2.5 μJ (C) 3.33 μJ (D) 5 μJ

একটি 400 Ω রোধ, একটি 250 mH আবেশক ও একটি 2.5 μF ধারক, 5 V শীর্ষমান ও 2kHz কৌণিক কম্পাঙ্কের একটি AC উৎসের সঙ্গে শ্রেণী সমবায়ে যুক্ত করা হল। সেক্ষেত্রে ধারকের স্থির তড়িৎশক্তির শীর্ষমান কত হবে ?

(A) 2 µµ (D) 2.5 µµ (D) 3 µµ (D) 3 µµ (D) 7 µµ

- 38. A charged particle moves with constant velocity in a region where no effect of gravity is felt but an electrostatic field E together with a magnetic field B may be present. Then which of the following cases are possible?
 - (A) $\vec{E} \neq 0$, $\vec{B} \neq 0$
- (B) $\vec{E} \neq 0$, $\vec{B} = 0$
- (C) $\vec{E} = 0$, $\vec{B} = 0$
- (D) $\vec{E} = 0, \vec{B} \neq 0$

একটি আহিত কণা এমন একটি ক্ষেত্রের মধ্যে স্থির বেগে চলনশীল যেখানে অভিকর্ষজ তুরণের কোনো প্রভাব নেই কিন্তু স্থিরতড়িংক্ষেত্র \vec{E} ও চৌম্বকক্ষেত্র \vec{B} থাকতে পারে। তাহলে নীচের কোন্ (কোন) অবস্থা সত্য হওয়া সম্ভব ?

- (A) $\vec{E} \neq 0, \vec{B} \neq 0$
- (B) $\vec{E} \neq 0$, $\vec{B} = 0$
- (C) $\tilde{E} = 0$, $\tilde{B} = 0$
- (D) $\vec{E} = 0, \vec{B} \neq 0$
- 39. A point source of light is used in an experiment of photo-electric effects. If the distance between the source and the photo-electric surface is doubled, which of the following may result?
 - (A) Stopping potential will be halved.
 - (B) Photo-electric current will decrease.
 - (C) Maximum kinetic energy of photo-electrons will decrease.
 - (D) Stopping potential will increase slightly.

আলোক-তড়িৎক্রিয়ার একটি পরীক্ষায় একটি বিন্দু উৎস ব্যবহার করা হল। উৎস থেকে আলোক-তড়িৎ পৃষ্ঠের দূরত্ব যদি দ্বিগুণ করা হয় তবে ফলস্বরূপ নীচের কোন্ (কোন্) ঘটনা ঘটতে পারে ?

- (A) নিরোধী বিভব অর্ধেক হয়ে যাবে
- (B) আলোক-তড়িৎ প্রবাহ কমে যাবে
- (C) আলোক ইলেক্ট্রনের সর্বোচ্চ গতিশক্তি কমে যাবে
- (D) নিরোধী বিভব সামান্য বৃদ্ধি পাবে
- **40.** Two metallic spheres of equal outer radii are found to have same moment of inertia about their respective diameters. Then which of the following statement(s) is/are true?
 - (A) The two spheres have equal masses
 - (B) The ratio of their masses is nearly 1.67: 1
 - (C) The spheres are made of different materials
 - (D) Their rotational kinetic energies will be equal when rotated with equal uniform angular speed about their respective diameters

সমান বহিঃব্যাসার্ধ বিশিষ্ট দুটি ধাতব গোলকের ক্ষেত্রে তাদের নিজ নিজ ব্যাস-অক্ষ সাপেক্ষে জাড্য ভ্রামক সমান। তাহলে নীচের কোন্ (কোন্) উত্তিনটি সত্য হতে পারে ?

- (A) গোলক দৃটির ভর সমান
- (B) গোলক দৃটির ভরের অনুপাত প্রায় 1.67 : I
- (C) গোলক দৃটি ভিন্ন উপাদানে তৈরী
- (D) গোলক দুটিকে নিজ নিজ ব্যাস-অক্ষ সাপেক্ষে সমান ও সুষম কৌণিক বেগে ঘোরালে তাদের ঘুর্ণন গতিশক্তি সমান হবে

CHEMISTRY

Category-I (Q. 41 to 70)

Category (Q. troops) Categor
দিলে ¼ নম্বর কাটা যাবে।
1 1 to will be more effective for flocculation of Fe(OH) ₃

			দিলে ¼ নম্বর কার্	গ যাবে	ı		
Amon	g the following.	the ic	on which will be	more	effective for floce	ulatio	n of Fe(OH) ₃
sol. is	D() 3-	(B)	SO 2-	(C)	SO ₂ 2-	(D)	NO ₃
(A)	PO ₄ "	(5)	304		ু কুলা ভাগিক কার্যকার	ते ठतः :	,
নিম্নের	আয়নগুলির মধ্যে বে	কানটি	Fe(OH) ₃ সলের তৎ	ষ্ণ এর	अभा आयम कारका		
(A)	PO ₄ 3:	(B)	SO_4^{-2}	(C)	SO_3^{2-}	(D)	NO ₃
The n	nale fraction of c	thano	l in water is 0.08.	Its mo	lality is		
(A)	6.32 mol kg ⁻¹	(B)	4.83 mol kg ⁻¹	(C)	3.82 mol kg ⁻¹	(D)	2.84 mol kg ⁻¹
জলীয়	দ্রবণে ইথানলের যে	মাল ভ	লংশ 0.08 হলে ঐ <u>ড</u>	হ্রবণের	মোলালিটি হবে		
						(D)	2.84 mol kg ⁻¹
			is mixed with 1	0 mi	of 0.02 M KL	The at	nount of PbI ₂
_				4	2 10-41	(D)	10 ⁻³ mol
(A)	10^{-2}mol	(B)	10 ⁻⁴ mol	(C)	2 × 10 ¬ moi	(D)	ाणा गाणा स्टब्स्ट्राच्याच्या
5 মিনি	ने 0.1 M Pb(NO ₃)2 দ্ৰব	ণের সাথে 10 মিলি	0.02 N	1 KI দ্রবণ মোশ্রত ব	ନ୍ୟା ୧୩	। (भागभूष अ८५
যে প	রিমাণ Pbl ₂ অধঃক্ষি	গু হবে	তার পরিমাণ হল				
				(C)	$2 \times 10^{-4} \text{ mol}$	(D)	10^{-3} mol
At 2	73 K temperature	e and	76 cm Hg pressur	e, the	density of a gas is	1.964	gL^{-1} . The gas is
(A)	CH_4	(B)	CO	(C)	He	(D)	CO_2
273	K তাপমাত্রা এবং 7	6 cm	Hg চাপে, একটি গ্যা	সের ঘ	াত্ব 1.964 gL ⁻¹ হৰে	ন গ্যাস্থ	हे रन
							CO ₂
radicky politiky od 100 Mills	ga wa i wa 1887 iliangan wakati ta 1888 wa i aga i wa 1888 i	i i sepi jedini i	19		a de general de la Region e constituir à de la constituir de general		P.T.O.
	sol. is (A) নিম্নের (A) The r (A) জলীয় (A) 5 ml preci (A) 5 মি (য প (A) 273	sol. is (A) PO ₄ ³⁻ নিম্নের আয়নগুলির মধ্যে হৈ (A) PO ₄ ³⁻ The mole fraction of e (A) 6.32 mol kg ⁻¹ জলীয় দ্রবলে ইথানলের হে (A) 6.32 mol kg ⁻¹ 5 ml of 0.1 M Pb(No ₃) precipitated will be at (A) 10 ⁻² mol 5 মিলি 0.1 M Pb(No ₃) যে পরিমাণ Pbl ₂ অধঃক্ষি (A) 10 ⁻² mol At 273 K temperature (A) CH ₄	sol. is (A) PO ₄ ³⁻ (B) নিমের আয়নগুলির মধ্যে কোনটি । (A) PO ₄ ³⁻ (B) The mole fraction of ethanol (A) 6.32 mol kg ⁻¹ (B) জলীয় দ্রবণে ইথানলের মোল ভর্ম (A) 6.32 mol kg ⁻¹ (B) 5 ml of 0.1 M Pb(NO ₃) ₂ precipitated will be about (A) 10 ⁻² mol (B) 5 মিলি 0.1 M Pb(NO ₃) ₂ দ্রব যে পরিমাণ Pbl ₂ অধঃক্ষিপ্ত হবে (A) 10 ⁻² mol (B) At 273 K temperature and (A) CH ₄ (B) 273 K তাপমাত্রা এবং 76 cm	Among the following, the ion which will be sol, is (A) PO ₄ ³ (B) SO ₄ ² নিম্নের আয়নগুলির মধ্যে কোনটি Fe(OH) ₃ সলের তথ (A) PO ₄ ³ (B) SO ₄ ² The mole fraction of ethanol in water is 0.08. (A) 6.32 mol kg ¹ (B) 4.83 mol kg ¹ জলীয় দ্রবণে ইথানলের মোল ভগ্নংশ 0.08 হলে ঐ ড (A) 6.32 mol kg ¹ (B) 4.83 mol kg ¹ 5 ml of 0.1 M Pb(NO ₃) ₂ is mixed with precipitated will be about (A) 10 ⁻² mol (B) 10 ⁻⁴ mol 5 মিলি 0.1 M Pb(NO ₃) ₂ দ্রবণের সাথে 10 মিলি যে পরিমাণ Pbl ₂ অধঃক্ষিপ্ত হবে তার পরিমাণ হল (A) 10 ⁻² mol (B) 10 ⁻⁴ mol At 273 K temperature and 76 cm Hg pressur (A) CH ₄ (B) CO 273 K তাপমাত্রা এবং 76 cm Hg চাপে, একটি গ্যা (A) CH ₄ (B) CO	Among the following, the ion which will be more sol, is (A) PO ₄ ³⁻ (B) SO ₄ ²⁻ (C) নিম্নের আয়নগুলির মধ্যে কোনটি Fe(OH) ₃ সলের তঞ্চন এর (A) PO ₄ ³⁻ (B) SO ₄ ²⁻ (C) The mole fraction of ethanol in water is 0.08. Its mol (A) 6.32 mol kg ⁻¹ (B) 4.83 mol kg ⁻¹ (C) জলীয় দ্রবণে ইথানলের মোল ভগ্নংশ 0.08 হলে ঐ দ্রবণের (A) 6.32 mol kg ⁻¹ (B) 4.83 mol kg ⁻¹ (C) 5 ml of 0.1 M Pb(NO ₃) ₂ is mixed with 10 ml precipitated will be about (A) 10 ⁻² mol (B) 10 ⁻⁴ mol (C) 5 মিলি 0.1 M Pb(NO ₃) ₂ দ্রবণের সাথে 10 মিলি 0.02 M যে পরিমাণ Pbl ₂ অধ্যক্ষিপ্ত হবে তার পরিমাণ হল (A) 10 ⁻² mol (B) 10 ⁻⁴ mol (C) At 273 K temperature and 76 cm Hg pressure, the (A) CH ₄ (B) CO (C) 273 K তাপমাত্রা এবং 76 cm Hg চাপে, একটি গ্যাসের ঘল	sol. is (A) PO4 ³ . (B) SO4 ² . (C) SO3 ² - নিম্নের আয়নগুলির মধ্যে কোনটি Fe(OH)3 সলের তঞ্চন এর জন্য অধিক কার্যকার্ত্ত (A) PO4 ³ . (B) SO4 ² . (C) SO3 ² - The mole fraction of ethanot in water is 0.08. Its molality is (A) 6.32 mol kg ⁻¹ (B) 4.83 mol kg ⁻¹ (C) 3.82 mol kg ⁻¹ জলীয় দ্রবণে ইথানলের মোল ভগ্নাংশ 0.08 হলে ঐ দ্রবণের মোলালিটি হবে (A) 6.32 mol kg ⁻¹ (B) 4.83 mol kg ⁻¹ (C) 3.82 mol kg ⁻¹ 5 ml of 0.1 M Pb(NO3) ₂ is mixed with 10 ml of 0.02 M KL recipitated will be about (A) 10 ⁻² mol (B) 10 ⁻⁴ mol (C) 2 × 10 ⁻⁴ mol 5 মিলি 0.1 M Pb(NO3) ₂ দ্রবণের সাথে 10 মিলি 0.02 M K1 দ্রবণ মিশ্রিভ বিমে পরিমাণ PbI ₂ অধ্যক্ষিপ্ত হবে তার পরিমাণ হল (A) 10 ⁻² mol (B) 10 ⁻⁴ mol (C) 2 × 10 ⁻⁴ mol At 273 K temperature and 76 cm Hg pressure, the density of a gas is (A) CH ₄ (B) CO (C) He 273 K তাপমাত্রা এবং 76 cm Hg চাপে, একটি গ্যাপের ঘনত্ব 1.964 gL ⁻¹ হবে (A) CH ₄ (B) CO (C) He	Among the following, the ion which will be more effective for flocculation sol. is $ (A) PO_4^{3-} \qquad (B) SO_4^{2-} \qquad (C) SO_3^{2-} \qquad (D) $

https://www.pyqonline.com

45.	Equ frac	al masses of eth	ane an	d hydrogen are i	mixed n is	in an empty	container	at 298 K. The
		15:16	(B)			1:4	(D)	1:6
		K তাপমাত্রায় সমত			হাইড়ে	নুজেন একটি খা	ল পাত্রে মি	শ্রত আছে। মোট
		র যে ভগ্নংশ হাইড্রে		•				
	(A)	15:16	(B)	1:1	(C)	1:4	(D)	1:6
46.	An i	ideal gas expands given process?					following	g is correct for
	(A)	$\Delta S = 0$	(B)	ΔT ≅ −ve	(C)	$\Delta U = 0$	(D)	$\Delta P = 0$
	একটি	ট আর্দশ গ্যাসের শূন	্ছানে রু	দ্ধতাপীয় সম্প্রসারণ	হলে নী)চের বিবৃতিগুলির	মধ্যে সঠিব	চটি শনাক্ত কর।
		$\Delta S = 0$		$\Delta T = -ve$				$\Delta P = 0$
47.	K _c (water) = 1.86 K	kg mo	l ¹ . The tempera	iture a	t which ice be	reins to se	marate from a
		ture of 10 mass %					-E	parate from a
		−1.86 °C			(C)	-3.3 °C	(D)	−3 °C
		ট দ্ৰবণে 10 শতাংশ ক্ষিপ্ত হবে তা হল: (য					থেকে যে	তাপমাত্রায় বরফ
				−3.72 °C	_		(D)	3 °C
48.		radius of the firs			gen ato	om is 0.53 × 1	0 ⁸ cm. T	he velocity of
	(A)	$2.188\times10^8~cm$	s ⁻¹		(B)	4.376×10^{8}	em s 1	
	(C)	$1.094 \times 10^8 \mathrm{cm}$	s- 1		(D)	2.188×10^9 c	cm s 1	
	হাই	ছাজেন পরমাণুর প্রথ	ম বোর	কক্ষের ব্যাসার্ধ ().53	× 10	⁸ cm। ঐ ক ন্দে	ইলেকট্রনের	গতিবেগ হবে
		$2.188\times10^8~cm$				4.376×10^{8} c		
	(C)	$1.094 \times 10^{8} \text{ cm}$	s^{-1}		(D)	2.188×10^9 c	em s 1	
49.	Whic	ch of the followin	g statei	nents is not true	for the	reaction 2F.	+ 2H ₂ O →	4HF + O ₂ ?
		F ₂ is more stron					_	_
	(C)	H – F bond is st		*				
	নিচের	কোন বিবৃতিটি বিত্রি	•आ 2F,	+ 2H ₂ O → 4HF	+ O ₂ s	এর ক্ষেত্রে সত্য ন	स्य १	
		০, অপেক্ষা ৮, তীর		_	2		•	
		O = () বন্ধন অপে						
		H – O বন্ধন অপেগ		-	ক্তিশালী	1		
	(D)	O অপেক্ষা F এর ত	ড়িৎ ঋণ	াত্মকতা নিমুতর				
A		er e er		20				

A	, is 			aga garraga garanana santra e Talah nat a	21			P.T.O.
	(A)	1 গ্রাম Ag	(B)	1 গ্রাম Fe	(C)	1 গ্রাম CI ₂	(D)	1 গ্রাম Mg
	নিয়ু	লিখিত কোনটিতে গ	পরমানুর ^হ	সংখ্যা সর্বাধিক	?			
	(A)	1g of Ag	(B)	l g of Fe	(C)	1 g of Cl_2	(D)	l g of Mg
53.	Whi	ich of the follow						
	(A)	2 43	(2)	J 12	(0)	•		
				$3\sqrt{2}$			(D)	2
	,	ক্ষ এবং 4s ক ক্ষে					্ হল	
	(A)	$2\sqrt{3}$	(B)	$3\sqrt{2}$	(C)	$\sqrt{3}$	(D)	2
52.		difference between the			r momentur	m of an electr	on in a	4f orbital and
	(D)	বৃদ্ধি পায়, থেহেণ্	হু আয়ত	য় হ্রাস পায়				
		বৃদ্ধি পায়, যেহেত্			দ্ধ পায়			
	(B)			4	≥ 			
	(A)			এর অনুপাত বৃ	দ্ধ পায়			
	দীর্ঘক্ষ	ণ যাবৎ তড়িৎ বি(ধরনের পরিবর্তন	হয় এবং	কেন হয় ?
	(D)	Increases, as the				6 (
	(C)	Increases, as th						
	(B)	Remains unch						
2	(A)	Decreases, as t						
51.	How	and why does t	he dens	ity of liquid v	water change	e on prolonged	l electroly	sis?
	(A)	4	(B)	6	(C)	3	(D)	1
	ইউরে	নিয়াম (₉₂ U) পর	ানুতে বি	জোড় ইলেকট্ৰ	নর সংখ্যা হল	:		
	(A)	4	(B)	6	(C)	3	(D)	1
50.	The r	number of unpar	red elec	errons in the t	manium (92)	o) atom is .		_

54. Indicate the correct IUPAC name of the co-ordination compound shown in the figure.

- (A) Cis-dichlorotetraminochromium (III) chloride
- Trans-dichlorotetraminochromium (III) chloride
- (C) Trans-tetraminedichlorochromium (III) chloride
- (D) Cis-tetraamminedichlorochromium (III) chloride

চিত্রে প্রদর্শিত কোওর্ডিনেশন যৌগটির সঠিক IUPAC নাম নির্দেশ কর

- (△) সিস-ভাইক্লোরোটেট্রামিনোক্রোমিয়াম (III) ক্লোরাইড
- (B) ট্রাম্স-ভাইক্রোরোটেট্রামিনোক্রোমিয়াম (III) ক্লোরাইভ
- (C) ট্রাম্স-টেট্রামিন্ডাইক্লোরোক্রোমিয়াম (III) ক্লোরাইড্
- (D) সিস্-টেট্রামিন্ডাইক্লোরোক্রেনিয়াম (III) ক্লোরাইড্
- What will be the mass of one atom of ${}^{12}C$? 55.
 - (A) 1 a.m.u.
- (B) 1.9923×10^{-23} g (C) 1.6603×10^{-22} g (D) 6 a.m.u

একটি ¹²C পরমাণর ভর কত ?

- (A) 1 a.m.u.
- (B) 1.9923×10^{-23} g (C) 1.6603×10^{-22} g (D) 6 a.m.u

- Bond order of He_2 , He_2^+ and He_2^{2+} are respectively: (A) $1, \frac{1}{2}, 0$ (B) $0, \frac{1}{2}, 1$ (C) $\frac{1}{2}, 1, 0$ (D) $1, 0, \frac{1}{2}$ He₂, He⁺₂ এবং He²⁺₂ এর বন্ধনক্রম যথাক্রমে: (A) $1, \frac{1}{2}, 0$ (B) $0, \frac{1}{2}, 1$ (C) $\frac{1}{2}, 1, 0$ (D) $1, 0, \frac{1}{2}$

			PC-	2020	•				
57.	To a solution of a colourless gas is evidichromate solution to	(alamer musis	tomination	or a write o	10011110	(ic. I threather		
	salt is (A) Na ₂ SO ₃	(B)	Na ₂ S	(C)	$Na_2S_2O_3$	(D)	$Na_2S_4O_6$		
	একটি বর্ণহীন উদত্যাগী (অধঃক্ষেপ পড়ে। বর্ণহীন বর্ণ ধারণ করে। সোডিয়া	সাডিয়াম গ্যাসটি ববণটি	। লবনে লঘু অ্যা আসিডযুক্ত ভাই হল	সিড যোগ ক ইক্রোমেট দ্র	রলে বর্ণহীন গ্যাস বণের মধ্য দিয়ে চা	উৎপন্ন ই লনা করা	য়ে ও সাদা বর্ণের		
	(A) Na ₂ SO ₃	(B)	Na ₂ S	(C)	$Na_2S_2O_3$	(17)	14420406		
58.	The reaction for obtain	ining th	ne metal (M) f	rom its oxi	ide (M ₂ O ₃) ore i	s given	by		
	$M_2O_3(s) + 2AI(\ell)$ —	Heat	$\Delta I_2 O_3(\ell) \pm 2N$	M(s), $(s - s)$	olid, $\ell = \text{liquid}$)				
	in that case, M is	(B)	Calcium	(C)	Iron	, ,	Zine		
	একটি ধাতব অস্ত্রাইড (N	4 ₂ O ₃) ⁵	আকরিক থেকে	ধাতু পাওয়ার	জন্য যে বিক্রিয়াটি	্বয়োগ	করা যায় তা হল		
	$M_2O_3(s) + 2AI(t)$ —	Heat -	$\Delta I_2 O_3(\ell) + 2!$	M(s), $(s = s)$	solid, # = liquid)	(সক্টে	a M হল		
	(A) কপার	(B)		(C)	আয়ুর্ন	(D)	জিংক		
50		Ca by e	electro reduct	ion of mol	ten CaCl ₂ some	CaF ₂	is added to the		
•••	 In the extraction of Ca by electro reduction of molten CaCl₂ some CaF₂ is added to the electrolyte for the following reason: (A) To keep the electrolyte in liquid state at temperature lower than the m. p. of CaCl₂ (B) To effect precipitation of Ca (C) To effect the electrolysis at lower voltage (D) To increase the current efficiency 								
	গলিত CaCl ₂ এর তড়ি	ৎ বিজার	াণ করে Ca নি	কাশনের জন	্য তড়িৎ বিশ্লেষ্যের	সঙ্গে বি	ছু পরিমান CaF_2		
	যোগ করা হয় যে কারণে	তা হল	;						
	(A) তড়িৎ বিশ্লেষ্যকে			নিচের উষ্ণও	গায় তরল অবস্থায় ৰ	রাখার জ	ના		
	(B) Ca কে অধক্ষিপ্ত			নোৰ জনা					
	(C) আরও নিম্নতর বি (D) তড়িৎ উৎকর্ষতা			(113 0(11)					
60.		of alky	l bromides (including	stereoismers) fo	ormed	in the reaction		
	(A) 1			(B)					
	(C) 3				No bromide fo				
	$Me_3C - CH = CH$		IBr → এই ি	বক্রিয়ায় উৎ	পন্ন অ্যালকিল ট্র	ামাইডে	র সবমোত সংখ্যা		
	(শ্টিরিওআইসোমার সহ) হবে		(B)	2				
	(A) 1 (C) 3				কোন ব্রোমাইড উ	টৎপন্ন হ	ग्र ना !		
Ā			ar a series a arrigant common transcription of the	23	THE STREET OF STREET		P.T.O.		

61. CI—OBr
$$\frac{1. \text{ Mg/diethyl ether}}{2. \text{ CH}_2\text{O}}$$
 Product

3. $\text{H}_3\text{O}^{\oplus}$

This product in the above reaction is উপরোক্ত বিক্রিয়ায় উৎপন্ন যৌগটি হল :

(A)
$$Br \longrightarrow CH_2OH$$
 (B) $CI \longrightarrow CH_2OH$ (C) $CI \longrightarrow CH_2OH$ (D) $HOH_2C \longrightarrow CH_2OH$

62. $O_2N \longrightarrow CO_2CH_3$ MeO O_2CH_3 MeO O_2CH_3 (III)

For the above three esters, the order of rates of alkaline hydrolysis is

উপরোক্ত তিনটি এস্টারের ক্ষারীয় আর্দ্রবিশ্লেষণের বিক্রিয়া গতির ক্রম হল:

$$(A) \quad I \ge II \ge III$$

(B)
$$||| > ||| > ||$$

$$(C)$$
 $I > III > II$

(D)
$$III > I > II$$

(A) Ph - CHD - OH (B) Ph - CHD - OD (C) $Ph - CD_2 - OH$ (D) $Ph - CD_2 - OD$

64. The correct order of acidity for the following compounds is:

নিমুলিখিত যৌগগুলির অম্লত্বের সঠিক ক্রুম হল:

For the following carbocations the correct order of stability is 65.

I: [⊕]CH₂ − COCH₃

II: ${}^{\oplus}CH_2 - OCH_3$

III: ${}^{\oplus}CH_2 - CH_3$

(A) ||| < || < 1|

(B) II < I < III (C) 1 < II < III

(D) $I \leq III \leq II$

নিমুলিথিত কার্বোক্যাটায়নগুলির ক্ষেত্রে স্থায়িত্বের সঠিক ক্রমটি হল :

I: [⊕]CH₂ − COCH₃

 $II: {}^{\oplus}CH_2 - OCH_3$ $III: {}^{\oplus}CH_2 - CH_3$

 $(A) \quad III < II < I$

 $(B) \quad |I| < I < |I||$

(C) | [<!] < !!]

(D) 1 < 111 < 11

The reduction product of ethyl 3-oxobutanoate by NaBH₄ in methanol is 66. ইথাইল 3-অক্সোবিউটানোয়েটের মিথানল মাধ্যমে NaBH, দ্বারা বিজ্ঞারণ ঘটালে উৎপন্ন বিক্রিয়াজাত পদার্থটি হল:

(B)

(C)

(D)

What is the major product of the following reaction? 67.

নিমুলিখিত বিক্রিয়াটির প্রধান বিক্রিয়া জাত পদার্থটি কি ?

(A)

 O_2N

 O_2N

(B)

(C)

(D)

68.	The maximum number of electrons in an atom in which the last electron filled has quantum numbers $n = 3$, $l = 2$ and $m = -1$ is						filled has the	
	(A)		(B)		(C)	28	(D)	30
	একটি পরমাণুর সর্বশেষ ইলেকট্রনের কোয়াশ্টাম সংখ্যাগুলি যদি $n=3, l=2$ এবং $m=-1$ হয় তবে ঐ							
	পরমাণুর সর্বাধিক ইলেকট্রন সংখ্যা হবে							
	(A)	17	(B)	27	(C)	28	(D)	30
69.	In the face-centred cubic lattice structure of gold the closest distance between gold atoms						en gold atoms	
	is (`a	a' being the edge le	ength	of the cubic unit o	ell)			
	(A)	$a\sqrt{2}$	(B)	$\frac{a}{\sqrt{2}}$	(C)	$\frac{a}{2\sqrt{2}}$	(D)	$2\sqrt{2}$ a
	গোল্ড	এর পৃষ্ঠকেন্দ্রিক খনা	কাকার	কেলাসে গোল্ড পরম	াণুর ম	ধ্য নিকটতম দূরত্ব হ	न : ('a	েহল ঘনকাকার
		কোশে বাহুর দৈর্ঘ্য)			•			
	(A)	$a\sqrt{2}$	(B)	$\frac{a}{\sqrt{2}}$	(C)	$\frac{a}{2\sqrt{2}}$	(D)	2√2 a·
70.	The equilibrium constant for the following reactions are given at 25° C							
		$2A \Longrightarrow B + C$.	$K_1 =$	1.0				
		$2B \rightleftharpoons C + D$,	K, -	16				
	$2C + D \rightleftharpoons 2P, K_3 = 25$							
	The equilibrium constant for the reaction $P \Longrightarrow A + \frac{1}{2}B$ at 25 °C is							
	(A)	$\frac{1}{20}$	(B)	20	(C)	1 42	(D)	21
	25 °C উষ্ণতায় নিমুলিখিত বিক্রিয়াগুলির সামাধ্রবক এর মান দেওয়া আছে							
		2A ← → B + C.	K. =	1.0				
		$2B \rightleftharpoons C + D$.						
			_					
		2C + D ← → 2P.	K ₃ =					
	25 °C উষ্ণতায় P \Longrightarrow $\mathrm{A} + rac{1}{2}\mathrm{B}$ বিক্রিয়াটির সামধ্রেবক এর মান হল							
	(A)	$\frac{1}{20}$	(B)	20	(C)	1/42	(D)	21
							in man	

Category-II (Q. 71 to 75)

Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ½ mark will be deducted. একটি উত্তর সঠিক। সঠিক উত্তর দিলে 2 নম্বর পাবে। ভূল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে 1/2 নম্বর কাটা যাবে।

A solution is saturated with $SrCO_3$ and SrF_2 . The $[CO_3^{2-}]$ is found to be 1.2×10^{-3} M. 71. The concentration of F in the solution would be

(A) 3.7×10^{-6} M (B) 3.2×10^{-3} M (C) 5.1×10^{-7} M (D) 3.7×10^{-2} M

Given: K_{sp} (SrCO₃) = 7.0 × 10⁻¹⁰, K_{sp} (SrF₂) = 7.9 × 10⁻¹⁰

একটি দ্রবণ ${
m SrCO}_3$ এবং ${
m SrF}_2$ দ্বারা সম্পৃক্ত । ঐ দ্রবণে $\{{
m CO}_3{}^2$ $\}$ এর মাত্রা $1.2 imes 10^{-3}$ M হলে ${
m F}^2$ আয়নের গাঢ়ত হবে

- (A) $3.7 \times 10^{-6} \text{ M}$ (B) $3.2 \times 10^{-3} \text{ M}$ (C) $5.1 \times 10^{-7} \text{ M}$ (D) $3.7 \times 10^{-2} \text{ M}$ দেওয়া আছে : $K_{\rm sp}$ (SrCO $_3$) = 7.0 × 10 $^{-10}$, $K_{\rm sp}$ (SrF $_2$) = 7.9 × 10 $^{-10}$
- A homonuclear diatomic gas molecule shows 2-electron magnetic moment. The 72. one-electron and two-electron reduced species obtained from above gas molecule can act as both oxidizing and reducing agents. When the gas molecule is one-electron oxidized the bond length decreases compared to the neutral molecule. The gas molecule is

(A) N₂

(B) Cl_2 (C) O_2

একটি সমকেন্দ্রকীয় (হোমোনিউক্লিয়ার) দ্বিপারমাণবিক গ্যাস ইলেকট্রনীয় দ্বি-চৌম্বকীয় ভ্রামক দেখায়। গ্যাসটির খেকে এক-ইলেকট্রন এবং দৃই-ইলেকট্রনীয় বিজারনের ফলে উৎপন্ন ব্যুগুলি জারক ও বিজারক উভয় হিসাবেই কাজ করতে পারে। উক্ত গ্যাসটির এক-ইলেকট্রনীয় জারণের ফলে উৎপন্ন ব্স্তুটির বন্ধন দৈর্ঘ্য গ্যাসটির তুলনায় হ্রাস পায়। গ্যাসটি হল

(B) Cl_2 (C) O_2 (D) B_2

P.T.O. Ā

73.
$$CH_3 - O - CH_2 - CI \xrightarrow{\text{aq.}^{\Theta}OH} CH_3 - O - CH_2 - OH$$

Which information below regarding this reaction is applicable?

- (A) It follows S_N2 pathway, because it is a primary alkyl chloride.
- (B) It follows S_N1 pathway, because the intermediate carbocation is resonance stabilized.
- (C) S_N1 pathway is not followed, because the intermediate carbocation is destabilised by -1 effect of oxygen.
- (D) A mixed S_N1 and S_N2 pathway is followed.

$$CH_3 - O - CH_2 - CI \xrightarrow{\text{aq.} \Theta \text{OH}} CH_3 - O - CH_2 - OH$$

নিমুলিখিত কোন তথ্যটি এই বিক্রিয়া সম্বন্ধে প্রযোজ্য ?

- (A) ইহা $S_{N}2$ পথ অনুসরণ করে, কারণ এটি একটি প্রাইমারী অ্যানকিল ক্লোরাইড।
- (B) ইহা $S_N 1$ পথ অনুসরণ করে, কারণ বিক্রিয়ামধ্যস্থ কার্বোক্যাটায়নটি সংস্পদন দারা সৃস্থিত।
- $(C)-S_N^{-1}$ পথ অনুসূত হয় না, কারণ বিক্রিয়ামধ্যস্থ কার্বোক্যাটায়নটি অক্সিন্ধেনের -1 প্রভাবদারা দুঃস্থিত।
- (D) মিশ্র $S_N 1$ ও $S_N 2$ পথ অনুসূত হয়।
- 74. Which of the following compounds is asymmetric? https://www.pyqonline.com নিমুলিখিত যৌগগুলির মধ্যে কোনটি অপ্রতিসম যৌগ ?

- 75. For a reaction 2A + B → P, when concentration of B alone is doubled, t_{1/2} does not change and when concentrations of both A and B is doubled, rate increases by a factor of 4. The unit of rate constant is,
 - (A) s^{-1} (B) L mol^{-1} s^{-1} (C) mol L^{-1} s^{-1} (D) $L^{2}mol^{-2}$ s^{-1} $2A+B\to P$ বিক্রিয়াটির ক্ষেত্রে যখন শুধুমাত্র B এর গাঢ়ত্ব বিশুণ করা হয় $t_{1/2}$ অপরিবর্তিত থাকে, কিছু যদি A এবং B উভয়ের গাঢ়ত্ব বিশুণ করা হয়, বিক্রিয়াটির হার চার শুণ বৃদ্ধি পায়। বিক্রিয়াটির হার ধ্রক্রের একক হল
 - (A) s^{-1} (B) $L \text{ mol}^{-1} s^{-1}$ (C) $\text{mol } L^{-1} s^{-1}$ (D) $L^2 \text{mol}^{-2} s^{-1}$

Category-III (Q. 76 to 80)

Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and no incorrect answer is marked, then score = 2 × number of correct answers marked ÷ actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will be considered wrong, but there is no negative marking for the same and zero mark will be awarded.

এক বা একাধিক উত্তর সঠিক। সব কটি সঠিক উত্তর দিলে 2 নম্বর পাবে। যদি কোন ভূল উত্তর না থাকে এবং সঠিক উত্তরও সব কটি না থাকে তাহলে পাবে 2 × যে কটি সঠিক উত্তর দেওয়া হয়েছে তার সংখ্যা ÷ আসলে যে কটি উত্তর সঠিক তার সংখ্যা । যদি কোনো ভূল উত্তর দেওয়া হয় বা একাধিক উত্তরের মধ্যে একটিও ভূল থাকে তাহলে উত্তরটি ভূল ধরে নেওয়া হবে। কিন্তু সেক্ষেত্রে কোনো নম্বর কাটা যাবে না, অর্থাৎ

76.	Which of the	following statement	(s) is / are incorrect	,
-----	--------------	---------------------	------------------------	---

- (A) A sink of SO₂ pollutant is O₃ in the atmosphere.
- (B) FGD is a process of removing NO₂ from atmosphere.
- (C) NO_x in fuel gases can be removed by alkaline scrubbing.
- (D) The catalyst used to convert CCl₄ to CF₄ by HF is SbF₅.

নিমূলিখিত বিবৃতিগুলির মধ্যে কোনটি / কোনগুলি সঠিক নয় ?

- (A) বায়ুমন্ডলের ${\rm O}_3$ হোল ${\rm SO}_2$ দূষকের (pollutant) একটি খাদ।
- (B) FGD প্রক্রিয়ায় বায়ুমন্ডল থেকে NO₂ দূরীভূত করা হয়।
- (C) গ্যাসীয় জ্বালানি থেকে NOু কে ক্ষারীয় গ্যাস প্রক্ষালন (scrubbing) দ্বারা দূরীভূত করা যায়।
- (D) CCI_4 কে HF দ্বারা CF_4 -এ রূপান্তর করতে SbF_5 অনুঘটক হিসাবে কাজ করে।

SiO ₂ is attacked by which one / ones of the following?								
(A)	HF	(B)	conc. HCI	(C)	hot NaOH	(D)	Fluorine	
কোনটি বা কোনগুলি SiO ₂ র সঙ্গে বিক্রিয়া করে ?								
(A)	HF	(B)	গাঢ় HC/	(C)	উষ্ণ NaOH	(Đ)	ফ্লুব্রিন	

29

P.T.O.

78. Me - C = C - Me
$$\xrightarrow{\text{Na/NH}_3(\text{liq.})}$$
 X $\xrightarrow{\text{dil.alkaline KMnO}_4}$ Product(s)

The product(s) from the above reaction will be

উপরের বিক্রিয়ায় উৎপন্ন পদার্থ (গুলি) হল

79. Which of the following reactions give(s) a *meso*-compound as the main product?

নিমুলিখিত বিক্রিয়াগুলির মধ্যে কোনটির ক্ষেত্রে প্রধান বিক্রিয়াজাত পদার্থ হিসাবে মেসো-যৌগ উৎপন্ন
হয়?

(A)
$$\longrightarrow \frac{\operatorname{Br}_2}{\operatorname{CH}_2\operatorname{Cl}_2}$$

(B)
$$\longrightarrow \frac{H_2}{Pd-C}$$

(C)
$$\frac{\text{II}_2}{\text{Lindlars catalyst}}$$

(D)
$$\bigcirc \frac{Br_2}{CCl_4}$$

80. For spontaneous polymerization, which of the following is (are) correct?

(A) ΔG is negative.

(B) ΔH is negative.

(C) ΔS is positive.

(D) Δs is negative.

স্বতঃস্ফৃর্ত বহুলীভবন (পলিমারিজেশন) এর ক্ষেত্রে নিম্নের কোনটি / কোনগুলি সঠিক ?

(A) ΔG এর মান ঋণাত্মক

(B) ΔH এর মান ঋণাত্মক

(C) Δs এর মান ধণাত্মক

(D) As এর মান ঋণাত্মক

PC-2020 Subject : PHYSICS & CHEMISTRY

সময়: ২ ঘণ্টা

সর্বাধিক নম্বর: ১০০

নির্দেশাবলী

- এই প্রশ্নপত্রে তিনটি ক্যাটেগরির অবজেঞ্জিভ প্রশ্ন আছে এবং প্রতিটি প্রশ্নের চারটি সন্তাব্য উত্তর দেওয়া আছে।
- ২. Category-I: একটি উত্তর সঠিক। সঠিক উত্তর দিলে I নম্বর পাবে। ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে ¼ নম্বর কাটা যাবে।
- ৩. Category-II: একটি উত্তর সঠিক। সঠিক উত্তর দিলে 2 নম্বর পাবে। ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে ½ নম্বর কাটা যাবে।
- 8. Category-III: এক বা একাধিক উত্তর সঠিক। সব কটি সঠিক উত্তর দিলে 2 নম্বর পাবে। যদি কোন ভুল উত্তর না থাকে এবং সঠিক উত্তরও সব কটি না থাকে তাহলে পাবে 2 x যে কটি সঠিক উত্তর দেওয়া হয়েছে তার সংখ্যা ÷ আসলে যে কটি উত্তর সঠিক তার সংখ্যা। যদি কোনো ভুল উত্তর দেওয়া হয় বা একাধিক উত্তরের মধ্যে একটিও ভুল থাকে তাহলে উত্তরটি ভুল ধরে নেওয়া হবে। কিছু সেক্ষেত্রে কোনো নম্বর কাটা যাবে না, অর্থাৎ শুন্য নম্বর পাবে।
- ৫. OMR পরে A, B,C, D চিহিন্ড সঠিক ঘরটি ভরাট করে উত্তর দিতে হবে।
- ৬. ()MR পত্রে উত্তর দিতে ওধুমাত্র কালো বা নীল বল পয়েন্ট পেন ব্যবহার করবে।
- 9. OMR পত্রে নির্দিষ্ট স্থান ছাড়া অন্য কোথাও কোন দাগ দেবে না।
- ৮. OMR পত্রে নির্দিষ্ট স্থানে প্রশ্নপত্রের নম্বর এবং নিজের রোল নম্বর অতি সাবধানতার সাথে লিখতে হবে এবং প্রয়োজনীয় ঘরগুলি পরণ করতে হবে।
- ৯. OMR পত্তে নির্দিষ্ট স্থানে নিজের নাম ও পরীক্ষা কেন্দ্রের নাম লিখতে হবে এবং নিজের সম্পূর্ণ স্বাক্ষর দিতে হবে।
- ১০. প্রশ্নপত্রর নম্বর বা রোল নম্বর ডুল লিখলে অথবা ডুল ঘর ডরাট করলে, পরীক্ষার্থীর নাম, পরীক্ষা কেন্দ্রের নাম বা সাক্ষরে কোন ডুল থাকলে উত্তর পত্র বাতিল হয়ে য়েতে পারে। OMR পত্রটি ভাঁজ হলে বা তাতে অনাবশ্যক দাগ পড়লেও বাতিল হয়ে য়েতে পারে। পরীক্ষার্থীর এই ধরনের ডুল বা অসর্তকতার জন্য উত্তরপত্র বাতিল হলে একমাত্র পরীক্ষার্থী নিজেই তার জন্য দায়ী থাক্রে।
- ১১. মোবাইলফোন, ক্যালকুলেটর, ক্লাইডরুল, লগটেবল, হাতঘড়ি, রেখাচিত্র, গ্রাফ বা কোন ধরণের তালিকা পরীক্ষা কক্ষে আনা যাবে না। আনলে সেটি বাজেয়াগু হবে এবং পরীক্ষার্থীর ওই পরীক্ষা বাতিল করা হবে।
- ১২. প্রশ্নপত্রের শেষে রাফ কাজ করার জন্য ফাঁকা জায়গা দেওয়া আছে। অন্য কোন কাগজ এই কাজে ব্যবহার করবে না।
- ১৩. পরীক্ষা কক্ষ ছাড়ার আগে OMR পত্র অবশ্য ই পরিদর্শককে দিয়ে যাবে।
- ১৪. এই প্রশ্নপত্রে ইংরাজী ও বাংলা উভয় ভাষাতেই প্রশ্ন দেওয়া আছে। বাংলা মাধ্যমে প্রশ্ন তৈরীর সময় প্রয়োজনীয় সাবধানতা ও সতর্কতা অবলম্বন করা হয়েছে। তা সত্ত্বেও যদি কোন অসঙ্গতি লক্ষ্য করা যায়, সেক্ষেত্রে ইংরাজী মাধ্যমে দেওয়া প্রশ্ন ঠিক ও চুড়ান্ত বলে বিবেচিত হবে।

