JEE MATHS UNIT 11
QUIZ NO 3
TOTAL QUESTIONS = 20
1. The equation of a plane parallel to the xy-plane is
A. z = c
B. x = c
C. y = c
D. x + y + z = 0
2. The distance of the point (2, 3, 4) from the origin is
A. sqrt(29)
B. sqrt(14)
C. 5
D. 7
3. The equation of a sphere with center (1, -2, 3) and radius 5 is
A. (x-1)^2 + (y+2)^2 + (z-3)^2 = 25
B. (x+1)^2 + (y-2)^2 + (z+3)^2 = 25
C. (x-1)^2 - (y+2)^2 + (z-3)^2 = 25
D. (x-1)^2 + (y-2)^2 - (z+3)^2 = 25
4. The shortest distance between the lines x/1 = y/2 = z/3 and x/2 = (y+1)/3 = (z-1)/4 is
A. sqrt(14)/7
B. sqrt(11)/7
C. sqrt(13)/7
D. sqrt(9)/7
5. The direction cosines of a line are given by
A. l^2 + m^2 + n^2 = 1
B. l + m + n = 1
C. l^2 - m^2 + n^2 = 1
D. l^2 + m^2 + n^2 = 0
6. The equation of the plane passing through (1, 2, 3) and perpendicular to the vector (4, -5, 6) is
A. 4(x-1) - 5(y-2) + 6(z-3) = 0
B. 4(x+1) + 5(y-2) - 6(z+3) = 0
C. x + y + z = 0
D. x - y + z = 0
7. The angle between the planes x + y + z = 1 and 2x - 3y + 4z = 5 is
A. cos^-1(1/sqrt(21))
B. sin^-1(1/sqrt(21))
C. tan^-1(1/sqrt(21))
D. cos^-1(1/2)
8. The distance of the point (1, -1, 2) from the plane 3x + 2y - 2z + 5 = 0 is
A. 2/sqrt(17)
B. 3/sqrt(17)
C. 4/sqrt(17)
D. 5/sqrt(17)
9. The parametric equations of a line passing through (3, -2, 5) and parallel to (1, 4, -6) are
A. x = 3 + t, y = -2 + 4t, z = 5 - 6t
B. x = 3 - t, y = -2 - 4t, z = 5 + 6t
C. x = 3 + t, y = -2 - 4t, z = 5 + 6t
D. x = 3 - t, y = -2 + 4t, z = 5 - 6t
10. The vector equation of the plane passing through the point (2, -3, 5) and normal to the vector (1, 1, -2) is
A. r·(i + j - 2k) = 6
B. r·(i - j + 2k) = 6
C. r·(i + j + 2k) = 6
D. r·(i - j - 2k) = 6
11. The length of the perpendicular from the point (1, 2, 3) to the plane x - y + z = 5 is
A. 2/sqrt(3)
B. 3/sqrt(3)
C. 4/sqrt(3)
D. 5/sqrt(3)
12. The equation of the plane passing through (1, 0, 0), (0, 1, 0), and (0, 0, 1) is
A. x + y + z = 1
B. x - y + z = 1
C. x + y - z = 0
D. x - y - z = 1
13. The line x = 2 + t, y = 3t, z = 1 - t intersects the plane x + y + z = 7 at
A. t = 2
B. t = 1
C. t = 3
D. t = 4
14. The equation of the sphere with center (1, -1, 2) and radius 3 is
A. (x-1)^2 + (y+1)^2 + (z-2)^2 = 9
B. (x+1)^2 + (y-1)^2 + (z+2)^2 = 9
C. (x-1)^2 - (y+1)^2 + (z-2)^2 = 9
D. (x+1)^2 + (y+1)^2 - (z-2)^2 = 9
15. The angle between the lines with direction ratios (1, 2, 3) and (4, -5, 6) is
A. cos^-1(1/3)
B. sin^-1(1/3)
C. tan^-1(1/3)
D. cos^-1(2/3)
16. The coordinates of the centroid of a tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) are
A. (1/4, 1/4, 1/4)
B. (1/3, 1/3, 1/3)
C. (1/2, 1/2, 1/2)
D. (1, 1, 1)
17. The volume of a tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) is
A. 1/6
B. 1/3
C. 1/2
D. 1
18. The equation of the line passing through (3, -2, 5) and parallel to (2, -1, 4) is
A. (x-3)/2 = (y+2)/-1 = (z-5)/4
B. (x+3)/2 = (y-2)/-1 = (z+5)/4
C. (x-3)/-2 = (y+2)/1 = (z-5)/-4
D. (x-3)/2 = (y-2)/1 = (z+5)/-4
19. The shortest distance between the lines x/1 = y/2 = z/3 and (x-1)/2 = (y+1)/3 = (z-2)/4 is
A. sqrt(29)/5
B. sqrt(27)/5
C. sqrt(23)/5
D. sqrt(21)/5
20. The vector perpendicular to both (1, 2, 3) and (4, 5, 6) is
A. (-3, 6, -3)
B. (3, -6, 3)
C. (6, -3, 6)
D. (-6, 3, -6)
Submit Quiz
Disclaimer for MCQ Quiz
The questions in this MCQ quiz are intended solely for educational purposes. While we strive to ensure the accuracy of the content, the information provided may not always be up-to-date or complete. The quiz creators are not liable for any misunderstandings, errors, or any consequences arising from the use of this quiz. Participants should verify any information independently before relying on it for any critical decision-making.
इस MCQ क्विज़ के प्रश्न केवल शैक्षिक उद्देश्यों के लिए हैं। हम सामग्री की सटीकता सुनिश्चित करने का प्रयास करते हैं, फिर भी यहां दी गई जानकारी हमेशा अद्यतित या पूर्ण नहीं हो सकती। क्विज़ के निर्माता किसी भी गलतफहमी, त्रुटि या इस क्विज़ के उपयोग से उत्पन्न होने वाले किसी भी परिणाम के लिए उत्तरदायी नहीं हैं। प्रतिभागियों को किसी भी महत्वपूर्ण निर्णय के लिए इस जानकारी पर निर्भर होने से पहले स्वतंत्र रूप से इसकी पुष्टि करनी चाहिए। https://www.pyqonline.com यदि कोई गलती है या कोई सुझाव है तो e-mail करें
[email protected]